CS154

Lecture 6:
Streaming Algorithms
and Communication Complexity
Streaming Algorithms
Streaming Algorithms
L = \{x \mid x \text{ has more 1’s than 0’s}\}

Initialize C := 0 and B := 0
Read the next bit x from the stream
If (C = 0) then B := x, C := 1
If (C \neq 0) and (B = x) then C := C + 1
If (C \neq 0) and (B \neq x) then C := C – 1
When the stream stops,
accept if B=1 and C > 0, else reject

B = the majority bit
C = how many more times that B appears

On all strings of length n, the algorithm uses \((1+\log_2 n)\) bits of space (to store B and C)
Streaming Algorithms

01011101

Streaming algorithms differ from DFAs in several significant ways:

1. Streaming algorithms can output more than one bit
2. The “memory” or “space” of a streaming algorithm can (slowly) increase as it reads longer strings
3. Could also make multiple passes over the data, could be randomized

Can recognize non-regular languages
Theorem: Suppose a language L can be recognized by a DFA with $\leq 2^p$ states. Then L is computable by a streaming algorithm A using $\leq p$ bits of space.

Proof Idea: Algorithm A stores the DFA’s current state in memory, beginning with the start state. Alg. A makes decisions based on DFA transitions. When the string ends, A outputs $accept$ if the DFA state is accepting, $reject$ otherwise.
Theorem: Suppose L is computable by a streaming algorithm A using $f(n)$ bits of space, on all strings of length n. Then for all n, L_n is recognized by a DFA with $\leq 2^{f(n)}$ states.

Proof Idea: The new DFA will have a state for each of the $2^{f(n)}$ possible configurations of A’s memory. When A sees a symbol, its memory will update; the transition function of the DFA can simulate that.
L = \{x \mid x \text{ has more 1’s than 0’s}\}

Is there a streaming algorithm for L using much \textit{less than} \((\log_2 n)\) space?

Theorem: Every streaming algorithm for L needs at least \((\log_2 n)-1\) bits of space

We will use:
- Myhill-Nerode Theorem
- The connection between DFAs and streaming
L = \{x \mid x \text{ has more 1’s than 0’s}\}

Theorem: Every streaming algorithm for L requires at least \((\log_2 n)-1\) bits of space

Proof Idea: Let \(n\) be even, and \(L_n \subseteq \{0,1\}^n \cap L\)

We will give a set \(S_n\) of \(n/2+1\) strings such that each pair in \(S_n\) is *distinguishable* in \(L_n\)

Myhill-Nerode \(\Rightarrow\) Every DFA recognizing \(L_n\) needs at least \(n/2+1\) states

\(\Rightarrow\) Every streaming algorithm for L requires at least \((\log n)-1\) bits of memory
\[L = \{ x \mid x \text{ has more 1’s than 0’s} \} \]

Theorem: Every streaming algorithm for \(L \) requires at least \((\log_2 n) - 1 \) bits of space

Suppose we partition all strings into their equivalence classes under \(\equiv_{L_n} \)

But the number of states in every DFA recognizing \(L_n \) is at least the number of equivalence classes under \(\equiv_{L_n} \)
\(L = \{x \mid x \text{ has more 1’s than 0’s}\} \)

Theorem: Every streaming algorithm for \(L \) requires at least \((\log_2 n)-1\) bits of space

Proof (Slide 1): Let \(S_n = \{0^{n/2 - i} 1^i \mid i = 0, ..., n/2\} \)

Let \(x = 0^{n/2 - k} 1^k \) and \(y = 0^{n/2 - j} 1^j \) be from \(S_n \), \(k > j \)

Claim: \(z = 0^{k-1} 1^{n/2-(k-1)} \) distinguishes \(x \) and \(y \) in \(L_n \)

\(xz \) has \(n/2-1 \) zeroes and \(n/2+1 \) ones \(\Rightarrow xz \in L_n \)

\(yz \) has \(n/2+(k-j-1) \) zeroes and \(n/2-(k-j-1) \) ones

But \(k-j-1 \geq 0 \) ... so \(yz \not\in L_n \)

So \(x \not\equiv_{L_n} y \), because \(z \) distinguishes \(x \) and \(y \)
Theorem: Every streaming algorithm for \(L \) requires at least \((\log_2 n) - 1\) bits of space

Proof (Slide 2):
All pairs of strings in \(S_n \) are distinguishable in \(L_n \)
⇒ There are at least \(|S_n|\) equiv classes of \(\equiv_{L_n} \)
Then, from the Myhill-Nerode Theorem:
⇒ All DFAs recognizing \(L_n \) need \(\geq |S_n| \) states
⇒ Every streaming algorithm for \(L \) requires at least \((\log_2 |S_n|)\) bits of space.
Recall \(|S_n| = n/2 + 1\) and we’re done!
Number of Distinct Elements

The DE problem
Input: \(x \in \{0,1,\ldots,2^k\}^*, \ 2^k > |x|^2 \)

Output: The number of distinct elements appearing in \(x \)

Note: There is a streaming algorithm for DE using \(O(kn) \) space

Theorem: Every streaming algorithm for DE requires \(\Omega(kn) \) space
Randomized Algorithms Help!

The DE problem
Input: $x \in \{0,1,\ldots,2^k\}^*$, $2^k > |x|^2$

Output: The number of distinct elements appearing in x

Theorem: There is a randomized streaming algorithm that can approximate DE to within 0.1% error, using $O(k + \log n)$ space!

See the lecture notes for more details.
Communication Complexity
Communication Complexity

A theoretical model of distributed computing

- **Function** $f : \{0,1\}^* \times \{0,1\}^* \rightarrow \{0,1\}$
 - Two inputs, $x \in \{0,1\}^*$ and $y \in \{0,1\}^*$
 - We assume $|x| = |y| = n$. Think of n as HUGE

- **Two computers: Alice and Bob**
 - Alice *only* knows x, Bob *only* knows y

- **Goal**: Compute $f(x, y)$ by communicating as few bits as possible between Alice and Bob

We do not count computation cost. We *only* care about the number of bits communicated.
Alice and Bob Have a Conversation

\[f(x,y) = 0 \]

- \[A(x,\varepsilon) = 0 \]
- \[B(y,0) = 1 \]
- \[A(x,01) = 1 \]
- \[B(y,011) = 0 \]

In every step: Each bit sent is a function of the party’s input and all the bits communicated so far in the conversation.

Communication cost = number of bits communicated

= 4 (in the example)

We assume Alice and Bob alternate in communicating, and the last bit sent is the value of \(f(x,y) \)
Def. A *protocol* for a function f is a pair of functions $A, B : \{0,1\}^* \times \{0,1\}^* \rightarrow \{0, 1, \text{STOP}\}$ with the semantics:

On input (x, y), let $r := 0$, $b_0 = \epsilon$.

While ($b_r \neq \text{STOP}$),

$$r++$$

If r is odd, Alice sends $b_r = A(x, b_1 \cdots b_{r-1})$

else Bob sends $b_r = B(y, b_1 \cdots b_{r-1})$

Output b_{r-1}. Number of rounds $= r - 1$
Def. The cost of a protocol P for f on n-bit strings is
\[\max_{x,y \in \{0,1\}^n} \text{number of rounds in } P \text{ to compute } f(x, y) \]

The communication complexity of f on n-bit strings is the minimum cost over all protocols for f on n-bit strings
\[= \text{the minimum number of rounds used in any protocol for computing } f(x, y) \text{ over all } n\text{-bit } x, y \]
Example. Let $f : \{0,1\}^* \times \{0,1\}^* \rightarrow \{0,1\}$ be arbitrary.

There is always a “trivial” protocol:
Alice sends bits of x in odd rounds
Bob sends bits of y in even rounds
After $2n$ rounds, they both know each other’s input!

The communication complexity of every f is at most $2n$
Example. \(\text{PARITY}(x, y) = \sum_i x_i + \sum_i y_i \mod 2. \)

What’s a good protocol for computing \(\text{PARITY} \)?

Alice sends \(b_1 = (\sum_i x_i \mod 2) \)
Bob sends \(b_2 = (b_1 + \sum_i y_i \mod 2). \) Alice stops.

\textit{The communication complexity of \text{PARITY} is 2}
Example. $\text{MAJORITY}(x, y) = \text{most frequent bit in } xy$

What’s a good protocol for computing MAJORITY?

Alice sends $b = \text{number of 1s in } x$

Bob computes $c = \text{number of 1s in } y$, sends 1 iff $b + c$ is greater than $(|x| + |y|)/2 = n$

Communication complexity of MAJORITY is $O(\log n)$
Example. $\text{EQUALS}(x, y) = 1 \iff x = y$

What’s a good protocol for computing EQUALS?

????

Communication complexity of EQUALS is at most $2n$
Connection to Streaming and DFAs

Let $L \subseteq \{0,1\}^*$

Def. $f_L: \{0,1\}^* \times \{0,1\}^* \rightarrow \{0,1\}$

for x, y with $|x| = |y|$ as:

$f_L(x, y) = 1 \Leftrightarrow xy \in L$

Examples:

$L = \{ x \mid x \text{ has an odd number of } 1\text{s} \}$

$\Rightarrow f_L(x, y) = \text{PARITY}(x, y) = \sum_i x_i + \sum_i y_i \mod 2$

$L = \{ x \mid x \text{ has more } 1\text{s than } 0\text{s} \}$

$\Rightarrow f_L(x, y) = \text{MAJORITY}(x, y)$

$L = \{ xx \mid x \in \{0,1\}^* \}$

$\Rightarrow f_L(x, y) = \text{EQUALS}(x, y)$
Connection to Streaming and DFAs

Let $L \subseteq \{0,1\}^*$

Def. $f_L: \{0,1\}^* \times \{0,1\}^* \rightarrow \{0,1\}$
for x, y with $|x| = |y|$ as:

$$f_L(x, y) = 1 \iff xy \in L$$

Theorem: If L has a streaming algorithm using $\leq s$ space, then the comm. complexity of f_L is at most $4s + 5$.

Proof: Alice runs streaming algorithm A on x.

Sends the memory content of A: this is s bits of space

Bob starts up A with that memory content, runs A on y.

Gets an output bit, sends to Alice.

(...why $4s+5$ rounds? Can you do better?)