CS154
Finishing up DFA Minimization, The Myhill-Nerode Theorem, and Streaming Algorithms
Theorem

For every regular language L, there is a unique (up to re-labeling of the states) minimal-state DFA M^* such that $L = L(M^*)$.

Furthermore, there is an efficient algorithm which, given any DFA M, will output this unique M^*.
Extending the transition function δ

Given DFA $M = (Q, \Sigma, \delta, q_0, F)$, we extend δ to a function $\Delta : Q \times \Sigma^* \to Q$ as follows:

- $\Delta(q, \varepsilon) = q$
- $\Delta(q, \sigma) = \delta(q, \sigma)$
- $\Delta(q, \sigma_1 \ldots \sigma_{k+1}) = \delta(\Delta(q, \sigma_1 \ldots \sigma_k), \sigma_{k+1})$

Note: $\Delta(q_0, w) \in F \iff M$ accepts w

Def. $w \in \Sigma^*$ distinguishes states q_1 and q_2 iff

$\Delta(q_1, w) \in F \iff \Delta(q_2, w) \notin F$
Extending the transition function δ

Given DFA $M = (Q, \Sigma, \delta, q_0, F)$, we extend δ to a function $\Delta : Q \times \Sigma^* \rightarrow Q$ as follows:

\[
\Delta(q, \varepsilon) = q
\]
\[
\Delta(q, \sigma) = \delta(q, \sigma)
\]
\[
\Delta(q, \sigma_1 \ldots \sigma_{k+1}) = \delta(\Delta(q, \sigma_1 \ldots \sigma_k), \sigma_{k+1})
\]

Note: $\Delta(q_0, w) \in F \iff M$ accepts w

Def. $w \in \Sigma^*$ **distinguishes** states q_1 and q_2 iff exactly one of $\Delta(q_1, w)$, $\Delta(q_2, w)$ is a final state
Fix $M = (Q, \Sigma, \delta, q_0, F)$ and let $p, q \in Q$

Definition:

State p is *distinguishable* from state q

iff there is $w \in \Sigma^*$ that distinguishes p and q

iff there is $w \in \Sigma^*$ so that exactly one of $\Delta(p, w), \Delta(q, w)$ is a final state

State p is *indistinguishable* from state q

iff p is not distinguishable from q

iff for all $w \in \Sigma^*, \Delta(p, w) \in F \iff \Delta(q, w) \in F$

Pairs of indistinguishable states are redundant...
Fix $M = (Q, \Sigma, \delta, q_0, F)$ and let $p, q, r \in Q$

Define a binary relation \sim on the states of M:

$p \sim q$ iff p is indistinguishable from q
$p \not\sim q$ iff p is distinguishable from q

Proposition: \sim is an equivalence relation

$p \sim p$ (reflexive)
$p \sim q \Rightarrow q \sim p$ (symmetric)
$p \sim q$ and $q \sim r \Rightarrow p \sim r$ (transitive)
Fix $M = (Q, \Sigma, \delta, q_0, F)$ and let $p, q, r \in Q$

Proposition: \sim is an equivalence relation

As a consequence, the relation \sim partitions Q into disjoint equivalence classes

$$[q] := \{ p \mid p \sim q \}$$
Algorithm: MINIMIZE-DFA

Input: DFA M

Output: DFA M_{MIN} such that:

$L(M) = L(M_{\text{MIN}})$

M_{MIN} has no *inaccessible* states

M_{MIN} is *irreducible*

||

For all states $p \neq q$ of M_{MIN}, p and q are distinguishable

Theorem: M_{MIN} is the unique minimal DFA that is equivalent to M
The Table-Filling Algorithm

Input: DFA $M = (Q, \Sigma, \delta, q_0, F)$
Output: (1) $D_M = \{ (p, q) \mid p, q \in Q \text{ and } p \not\sim q \}$
 (2) $\text{EQUIV}_M = \{ [q] \mid q \in Q \}$

Base Case: For all (p, q) such that
p accepts and q rejects $\Rightarrow p \not\sim q$
The Table-Filling Algorithm

Input: DFA $M = (Q, \Sigma, \delta, q_0, F)$
Output: (1) $D_M = \{ (p, q) \mid p, q \in Q \text{ and } p \neq q \}$
(2) $\text{EQUIV}_M = \{ [q] \mid q \in Q \}$

Base Case: For all (p, q) such that p accepts and q rejects $\Rightarrow p \not\sim q$

Iterate: If there are states p, q and symbol $\sigma \in \Sigma$ satisfying:

\[
\delta (p, \sigma) = p' \\
\delta (q, \sigma) = q'
\]

$\sim \Rightarrow p \not\sim q$

Repeat until no more D’s can be added
Claim: If \((p, q)\) is marked D by the Table-Filling algorithm, then \(p \sim q\)
Claim: If \((p, q)\) is not marked \(D\) by the Table-Filling algorithm, then \(p \sim q\)

Proof (by contradiction):
Suppose the pair \((p, q)\) is not marked \(D\) by the algorithm, yet \(p \not\sim q\) (call this a “bad pair”)
Of all such bad pairs, let \(p, q\) be a pair with the \textit{shortest} distinguishing string \(w\)
\(\Delta(p, w) \in F\) and \(\Delta(q, w) \notin F\) \hspace{1cm} (Why is \(|w| > 0|?)

We have \(w = \sigma w'\), for some string \(w'\) and some \(\sigma \in \Sigma\)
Let \(p' = \delta(p, \sigma)\) and \(q' = \delta(q, \sigma)\)

Then \((p', q')\) is also a bad pair, but with a SHORTER \(w'\)!
Algorithm MINIMIZE

Input: DFA M

Output: Equivalent minimal-state DFA M_{MIN}

1. Remove all inaccessible states from M
2. Run Table-Filling algorithm on M to get:
 $EQUIV_M = \{ \lbrack q \rbrack \mid q \text{ is an accessible state of } M \}$
3. Define: $M_{MIN} = (Q_{MIN}, \Sigma, \delta_{MIN}, q_{0\,MIN}, F_{MIN})$

 $Q_{MIN} = EQUIV_M$, $q_{0\,MIN} = \lbrack q_0 \rbrack$, $F_{MIN} = \{ \lbrack q \rbrack \mid q \in F \}$

 $\delta_{MIN}(\lbrack q \rbrack, \sigma) = \lbrack \delta(q, \sigma) \rbrack$

 Claim: $L(M_{MIN}) = L(M)$
MINIMIZE
Claim: Suppose $L(M') = L(M_{\text{MIN}})$ and M' has no inaccessible states and M' is irreducible. Then there is an isomorphism between M' and M_{MIN}.

Suppose for now the Claim is true. If M' is a minimal DFA, then M' has no inaccessible states and is irreducible (why?)

So the Claim implies:

If M' is a minimal DFA for M, then there is an isomorphism between M' and M_{MIN}. Therefore the Thm holds!
Thm: M_{MIN} is the **unique** minimal DFA equivalent to M

Claim: Suppose $L(M')=L(M_{\text{MIN}})$ and M' has no inaccessible states and M' is irreducible. Then there is an **isomorphism** between M' and M_{MIN}

Proof: We recursively construct a map from the states of M_{MIN} to the states of M'

Base Case: $q_{0\text{MIN}} \mapsto q_0'$

Recursive Step: If $p \mapsto p'$

Then $q \mapsto q'$
Base Case: $q_0 \text{MIN} \leftrightarrow q_0'$

Recursive Step: If $p \leftrightarrow p'$

Then $q \leftrightarrow q'$
Base Case: $q_{0 \text{MIN}} \mapsto q_0'$

Recursive Step: If $p \mapsto p'$

\[
\begin{array}{c}
\sigma \\
\sigma \\
\end{array}
\]

Then $q \mapsto q'$

We need to prove:

- The map is defined everywhere
- The map is well defined
- The map is a bijection
- The map preserves all transitions:
 If $p \mapsto p'$ then $\delta_{\text{MIN}}(p, \sigma) \mapsto \delta'(p', \sigma)$

(this follows from the definition of the map!)
The map is defined everywhere

That is, for all states q of M_{MIN} there is some state q' of M' such that $q \mapsto q'$

If $q \in M_{\text{MIN}}$, there is a string w such that

$\Delta_{\text{MIN}}(q_{0_{\text{MIN}}}, w) = q$ (Why?)

Let $q' = \Delta'(q_{0'}, w)$. Then $q \mapsto q'$
The map is well defined
Suppose there are states q' and q'' such that $q \mapsto q'$ and $q \mapsto q''$

We show that q' and q'' are \textit{indistinguishable}, so it must be that $q' = q''$

Base Case: $q_{0 \text{MIN}} \mapsto q_0'$

Recursive Step: If $p \mapsto p'$

Then $q \mapsto q'$

\[q \quad q' \quad \sigma \quad \sigma \]
Suppose there are states q' and q'' such that $q \leftrightarrow q'$ and $q \leftrightarrow q''$

Now suppose q' and q'' are distinguishable...
The map is onto

Want to show: For all states \(q' \) of \(M' \) there is a state \(q \) of \(M_{\text{MIN}} \) such that \(q \mapsto q' \)

For every \(q' \) there is a string \(w \) such that
\(M' \) reaches state \(q' \) after reading in \(w \)

Let \(q \) be the state of \(M_{\text{MIN}} \) after reading in \(w \)

Claim: \(q \mapsto q' \)
The map is one-to-one

Proof by contradiction. Suppose there are states $p \neq q$ such that $p \mapsto q'$ and $q \mapsto q'$

If $p \neq q$, then p and q are distinguishable

The map is one-to-one

Proof by contradiction. Suppose there are states $p \neq q$ such that $p \mapsto q'$ and $q \mapsto q'$

If $p \neq q$, then p and q are distinguishable
How can we prove that two regular expressions are equivalent?
The Myhill-Nerode Theorem
We can also define a similar equivalence relation over *strings* and *languages*:

Let \(L \subseteq \Sigma^* \) and \(x, y \in \Sigma^* \)

\[x \equiv_L y \text{ iff } \text{ for all } z \in \Sigma^*, [xz \in L \iff yz \in L] \]

Define: \(x \) and \(y \) are *indistinguishable to* \(L \) iff \(x \equiv_L y \)

Claim: \(\equiv_L \) is an equivalence relation

Proof?
Let $L \subseteq \Sigma^*$ and $x, y \in \Sigma^*$

$x \equiv_L y$ iff for all $z \in \Sigma^*$, $[xz \in L \iff yz \in L]$

The Myhill-Nerode Theorem:
A language L is regular if and only if
the number of equivalence classes of \equiv_L is finite.

Proof (\Rightarrow) Let $M = (Q, \Sigma, \delta, q_0, F)$ be a min DFA for L.
Define the relation: $x \sim_M y$ \iff $\Delta(q_0, x) = \Delta(q_0, y)$

Claim: \sim_M is an equivalence relation with $|Q|$ classes

Claim: If $x \sim_M y$ then $x \equiv_L y$

Proof: $x \sim_M y$ implies for all $z \in \Sigma^*$, xz and yz reach
the same state of M. So $xz \in L \iff yz \in L$, and $x \equiv_L y$

Corollary: Number of equiv. classes of \equiv_L is at most
the number of equiv. classes of \sim_M (which is $|Q|$)
Let $L \subseteq \Sigma^*$ and $x, y \in \Sigma^*$

$x \equiv_L y$ iff for all $z \in \Sigma^*$, $[xz \in L \iff yz \in L]$

(\iff) If the number of equivalence classes of \equiv_L is k then there is a DFA for L with k states

Idea: Build a DFA with these equivalence classes!

Define a DFA M where

Q is the set of equivalence classes of \equiv_L

$q_0 = [\epsilon] = \{y \mid y \equiv_L \epsilon\}$

$\delta([x], \sigma) = [x \sigma]$

$F = \{[x] \mid x \in L\}$

Claim: M accepts x if and only if $x \in L$
The Myhill-Nerode Theorem gives us a new way to prove that a given language is not regular:

L is not regular
if and only if
there are infinitely many equiv. classes of \equiv_L

L is not regular
if and only if
There are infinitely many strings w_1, w_2, \ldots so that for all $w_i \neq w_j$, w_i and w_j are distinguishable to L:
there is a $z \in \Sigma^*$ such that exactly one of $w_i z$ and $w_j z$ is in L
The **Myhill-Nerode Theorem** gives us a *new* way to prove that a given language is not regular:

Theorem: \(L = \{0^n 1^n \mid n \geq 0\} \) is not regular.

Proof: Consider the infinite set of strings

\[S = \{0, 0^1, 0^2, \ldots, 0^n, \ldots\} \]

Take any pair \((0^m, 0^n)\) of distinct strings in \(S \)

Let \(z = 1^m \)

Then \(0^m 1^m\) is in \(L\), but \(0^n 1^m\) is *not* in \(L\)

That is, all pairs of strings in \(S\) are distinguishable

Hence there are infinitely many equivalence classes of \(\equiv_L \), and \(L \) is not regular.
Streaming Algorithms
Streaming Algorithms

42
$L = \{x \mid x$ has more 1’s than 0’s$\}$

Initialize $C := 0$ and $B := 0$

Read the next bit x from the stream

If $(C = 0)$ then $B := x$, $C := 1$

If $(C \neq 0)$ and $(B = x)$ then $C := C + 1$

If $(C \neq 0)$ and $(B \neq x)$ then $C := C – 1$

When the stream stops, accept if and only if $B=1$ and $C > 0$

$B =$ the majority bit
$C =$ how many more times that B appears

On all strings of length n, the algorithm uses $(1+\log_2 n)$ bits of space (to store B and C)