Finite Automata vs Regular Expressions, Non-Regular Languages

CS 154
Deterministic Finite Automata

Computation with finite memory
Non-Deterministic Finite Automata

Computation with finite memory

and "guessing"
Regular Languages are closed under all of the following operations:

- **Union:** \(A \cup B = \{ w \mid w \in A \text{ or } w \in B \} \)
- **Intersection:** \(A \cap B = \{ w \mid w \in A \text{ and } w \in B \} \)
- **Complement:** \(\overline{A} = \{ w \in \Sigma^* \mid w \notin A \} \)
- **Reverse:** \(A^R = \{ w_1 \ldots w_k \mid w_k \ldots w_1 \in A \} \)
- **Concatenation:** \(A \cdot B = \{ vw \mid v \in A \text{ and } w \in B \} \)
- **Star:** \(A^* = \{ w_1 \ldots w_k \mid k \geq 0 \text{ and each } w_i \in A \} \)
Regular Expressions

Computation as simple, logical description

A totally different way of thinking about computation:

What is the complexity of describing the strings in the language?
Inductive Definition of Regexp

Let Σ be an alphabet. We define the regular expressions over Σ inductively:

For all $\sigma \in \Sigma$, σ is a regexp

ε is a regexp

\emptyset is a regexp

If R_1 and R_2 are both regexps, then

(R_1R_2), $(R_1 + R_2)$, and $(R_1)^*$ are regexps
Precedence Order: *

\[\text{Example: } R_1 \cdot R_2 + R_3 = ((R_1 \cdot R_2) + R_3) \]
Definition: Regexps Represent Languages

The regexp $\sigma \in \Sigma$ represents the language $\{\sigma\}$

The regexp ε represents $\{\varepsilon\}$

The regexp \emptyset represents \emptyset

If R_1 and R_2 are regular expressions representing L_1 and L_2 then:

$(R_1 R_2)$ represents $L_1 \cdot L_2$

$(R_1 + R_2)$ represents $L_1 \cup L_2$

$(R_1)^*$ represents L_1^*

Example: $(10 + 0^*1)$ represents $\{0^k1 \mid k \geq 0\} \cup \{10\}$
For every regexp R, define $L(R)$ to be the language that R represents.

A string $w \in \Sigma^*$ is *accepted by* R (or, w *matches* R) if $w \in L(R)$.

Example: 01010 matches the regexp (01)*0.
Assume $\Sigma = \{0,1\}$

$\{ w \mid w \text{ has exactly a single 1} \}$

0^*10^*
Assume $\Sigma = \{0,1\}$

What language does the regexp \emptyset^* represent?

$\{\varepsilon\}$
Assume \(\Sigma = \{0,1\} \)

\{ w \mid w \text{ has length } \geq 3 \text{ and its 3rd symbol is } 0 \}

\((0+1)(0+1)0(0+1)^*\)
Assume $\Sigma = \{0,1\}$

\[\{ w \mid \text{every odd position in } w \text{ is a } 1 \} \]

\[(1(0 + 1))^{\ast}(1 + \varepsilon) \]
DFAs \equiv NFAs \equiv Regular Expressions!

L can be represented by some regexp

\iff L is regular
L can be represented by some regexp
⇒ L is regular
Given any regexp R, we will construct an NFA N s.t. N accepts \textit{exactly} the strings accepted by R.

Proof by induction on the \textit{length} of the regexp R:

\textbf{Base Cases (R has length 1):}

- $R = \sigma$
 \[\xrightarrow{\sigma} \]

- $R = \varepsilon$
 \[\rightarrow \]

- $R = \emptyset$
 \[\rightarrow \]
Induction Step: Suppose every regexp of length $< k$ represents some regular language.

Consider a regexp R of length $k > 1$

Three possibilities for R:

1. $R = R_1 + R_2$
2. $R = R_1 R_2$
3. $R = (R_1)^*$
Induction Step: Suppose every regexp of length $< k$ represents some regular language.

Consider a regexp R of length $k > 1$

Three possibilities for R:

- $R = R_1 + R_2$ By induction, R_1 and R_2 represent some regular languages, L_1 and L_2
- $R = R_1 R_2$ But $L(R) = L(R_1 + R_2) = L_1 \cup L_2$
- $R = (R_1)^*$ so $L(R)$ is regular, by the union theorem!
Induction Step: Suppose every regexp of length $< k$ represents some regular language.

Consider a regexp R of length $k > 1$

Three possibilities for R:

- $R = R_1 + R_2$
 By induction, R_1 and R_2 represent some regular languages, L_1 and L_2

- $R = R_1 \cdot R_2$
 But $L(R) = L(R_1 \cdot R_2) = L_1 \cdot L_2$

- $R = (R_1)^*$
 so $L(R)$ is regular by the concatenation theorem
Induction Step: Suppose every regexp of length \(< k \) represents some regular language.

Consider a regexp \(R \) of length \(k > 1 \)

Three possibilities for \(R \):

\[
R = R_1 + R_2 \\
R = R_1 R_2 \\
R = (R_1)^*
\]

By induction, \(R_1 \) and \(R_2 \) represent some regular languages, \(L_1 \) and \(L_2 \)

But \(L(R) = L(R_1^*) = L_1^* \)

so \(L(R) \) is regular, by the **star theorem**
Induction Step: Suppose every regexp of length $< k$ represents some regular language.

Consider a regexp R of length $k > 1$

Three possibilities for R:

1. $R = R_1 + R_2$ By induction, R_1 and R_2 represent some regular languages, L_1 and L_2
2. $R = R_1 R_2$ But $L(R) = L(R_1^*) = L_1^*$
3. $R = (R_1)^*$ so $L(R)$ is regular, by the *star theorem*

Therefore: If L is represented by a regexp, then L is regular
Give an NFA that accepts the language represented by \((1(0 + 1))^*\)

Regular expression: \((1(0+1))^*\)
Generalized NFAs (GNFA)

L can be represented by a regexp
\
\Leftrightarrow
\L\

L is a regular language

Idea: Transform an NFA for L into a regular expression by removing states and re-labeling the arcs with regular expressions

Rather than reading in just 0 or 1 letters from the string on a step, we can read in entire substrings
A GNFA is a 5-tuple $G = (Q, \Sigma, R, q_{\text{start}}, q_{\text{accept}})$

Q, Σ are states and alphabet

$R : (Q-\{q_{\text{accept}}\}) \times (Q-\{q_{\text{start}}\}) \rightarrow \mathcal{R}$

is the transition function

$q_{\text{start}} \in Q$ is the start state

$q_{\text{accept}} \in Q$ is the (unique) accept state

$\mathcal{R} = \text{set of all regular expressions over } \Sigma$
A GNFA is a 5-tuple $G = (Q, \Sigma, R, q_{\text{start}}, q_{\text{accept}})$

Let $w \in \Sigma^*$ and let G be a GNFA. G accepts w if w can be written as $w = w_1 \cdots w_k$ where $w_i \in \Sigma^*$ and there is a sequence $r_0, r_1, \ldots, r_k \in Q$ such that

- $r_0 = q_{\text{start}}$
- w_i matches $R(r_{i-1}, r_i)$ for all $i = 1, \ldots, k$, and
- $r_k = q_{\text{accept}}$

$L(G) = \text{set of all strings that } G \text{ accepts} = \text{“the language recognized by } G\text{”}$
This GNFA recognizes $L(a^*b(cb)^*a)$

Is $aaabcbcbcbaba$ accepted or rejected?

Is bba accepted or rejected?

Is $bcba$ accepted or rejected?
Add unique start and accept states
While the machine has more than 2 states:

Pick an internal state, **rip it out and re-label the arrows with regexps**, to account for paths through the missing state.
While the machine has more than 2 states:

Pick an internal state, **rip it out and re-label the arrows with regexps**, to account for paths through the missing state
In general:

While the machine has more than 2 states:
While the machine has more than 2 states:

In general:

$$R(q_1, q_2) R(q_2, q_2)^* R(q_2, q_3) + R(q_1, q_3)$$
R(q_0, q_3) = (a*b)(a+b)^*
represents L(N)
$R(q_0, q_3) = (a*b)(a+b)^*$

represents L(N)
\[R(q_0, q_3) = (a*b)(a+b)^* \]
represents \(L(N) \)
Formally: Given an DFA, add q_{start} and q_{acc} to create G

For all q, q', define $R(q, q')$ to be σ if $\delta(q, \sigma) = q'$, else \emptyset

CONVERT(G): *(Takes a GNFA, outputs a regexp)*

If #states = 2 return $R(q_{\text{start}}, q_{\text{acc}})$

If #states > 2

select $q_{\text{rip}} \in Q$ different from q_{start} and q_{acc}

define $Q' = Q - \{q_{\text{rip}}\}$

define R' on $Q' - \{q_{\text{acc}}\} \times Q' - \{q_{\text{start}}\}$ as:

$$R'(q_i, q_j) = R(q_i, q_{\text{rip}}) R(q_{\text{rip}}, q_{\text{rip}})^* R(q_{\text{rip}}, q_j) + R(q_i, q_j)$$

return $\text{CONVERT}(G')$

Claim: $L(G') = L(G)$
Theorem: Let $R = \text{CONVERT}(G)$. Then $L(R) = L(G)$.

Proof by induction on k, the number of states in G

Base Case: $k = 2$ \hspace{1cm} \text{CONVERT outputs } R(q_{\text{start}}, q_{\text{acc}}) \checkmark

Inductive Step:

Assume theorem is true for $k-1$ state GNFAs

Let G have k states. Let G' be the $k-1$ state GNFA obtained by ripping out a state.

We already claimed that $L(G) = L(G')$

G' has $k-1$ states, so by induction,

$L(G') = L(\text{CONVERT}(G')) = L(R)$

Therefore $L(R) = L(G)$. \hspace{1cm} \text{QED}$
The automaton has two states, \(q_1 \) and \(q_2 \), with transitions labeled as follows:
- From \(q_1 \) to \(q_1 \) on input \(bb \)
- From \(q_1 \) to \(q_2 \) on input \(a + ba \)
- From \(q_2 \) to \(q_1 \) on input \(b \)
- From \(q_2 \) to itself on input \(\varepsilon \)
- From \(q_1 \) to itself on input \(\varepsilon \)
\[bb + (a + ba)b^*a \]

\[(bb + (a + ba)b^*a)^* (b + (a + ba)b^*) \]
Convert the NFA to a regular expression
Convert the NFA to a regular expression
Convert the NFA to a regular expression

\[(a + b)b^*b \]
Convert the NFA to a regular expression

\[((a + b)b^*b(bb^*b)^a)^*(\epsilon + (a + b)b^*b(bb^*b)^*) \]
DEFINITION

DFAs <-> NFAs

Regular Languages <-> Regular Expressions
Some Languages Are Not Regular:

Limitations on DFAs
Regular or Not?

\[C = \{ w \mid w \text{ has equal number of } 1s \text{ and } 0s \} \]

NOT REGULAR!

\[D = \{ w \mid w \text{ has equal number of occurrences of } 01 \text{ and } 10 \} \]

REGULAR!
\{ w \mid w \text{ has equal number of occurrences of } 01 \text{ and } 10 \} \\
= \{ w \mid w = 1, w = 0, \text{ or } w = \varepsilon, \text{ or } w \text{ starts with a } 0 \text{ and ends with a } 0, \text{ or } w \text{ starts with a } 1 \text{ and ends with a } 1 \} \\
1 + 0 + \varepsilon + 0(0+1)^*0 + 1(0+1)^*1 \\

Claim: \\
A string \(w \) has equal occurrences of 01 and 10 \\
\iff \(w \) starts and ends with the same bit.
The Pumping Lemma: Structure in Regular Languages

Let L be a regular language

Then there is a positive integer P s.t.

for all strings $w \in L$ with $|w| \geq P$

there is a way to write $w = xyz$, where:

1. $|y| > 0$ (that is, $y \neq \varepsilon$)
2. $|xy| \leq P$
3. For all $i \geq 0$, $xy^iz \in L$

Why is it called the pumping lemma? The word w gets *pumped* into longer and longer strings...
Proof: Let M be a DFA that recognizes L

Let P be the number of states in M

Let w be a string where \(w \in L \) and \(|w| \geq P \)

We show: \(w = xyz \)

1. \(|y| > 0 \)
2. \(|xy| \leq P \)
3. \(xy^iz \in L \) for all \(i \geq 0 \)

There must exist \(j \) and \(k \) such that \(0 \leq j < k \leq P \), and \(q_j = q_k \)
Let’s prove that $B = \{0^n1^n \mid n \geq 0\}$ is not regular

By contradiction. Assume B is regular.
Let P be the number of states in a DFA for B.
Let $w = 0^P1^P$

If B is regular, then there is a way to write w
as $w = xyz$, $|y| > 0$, $|xy| \leq P$, and
for all $i \geq 0$, xy^iz is also in B

Claim: The string y must be all zeroes.

Why? Because $|xy| \leq P$ and $w = xyz = 0^P1^P$

But then $xyyz$ has more 0s than 1s Contradiction!
end