CS 154

Finite Automata vs Regular Expressions, Non-Regular Languages
Deterministic Finite Automata

Computation with finite memory
Non-Deterministic Finite Automata

Computation with finite memory
and “guessing”
Regular Languages are closed under all of the following operations:

→ Union: \(A \cup B = \{ w \mid w \in A \text{ or } w \in B \} \)

→ Intersection: \(A \cap B = \{ w \mid w \in A \text{ and } w \in B \} \)

→ Complement: \(\neg A = \{ w \in \Sigma^* \mid w \notin A \} \)

→ Reverse: \(A^R = \{ w_1 \ldots w_k \mid w_k \ldots w_1 \in A \} \)

→ Concatenation: \(A \cdot B = \{ vw \mid v \in A \text{ and } w \in B \} \)

→ Star: \(A^* = \{ w_1 \ldots w_k \mid k \geq 0 \text{ and each } w_i \in A \} \)
Regular Expressions

Computation as simple, logical description

A totally different way of thinking about computation: What is the complexity of describing the strings in the language?
Inductive Definition of Regexp

Let Σ be an alphabet. We define the regular expressions over Σ inductively:

For all $\sigma \in \Sigma$, σ is a regexp

ε is a regexp

\emptyset is a regexp

If R_1 and R_2 are both regexps, then

(R_1R_2), $(R_1 + R_2)$, and $(R_1)^*$ are regexps
Precedence Order: \ast

then \cdot

then $+$

Example: $R_1 \ast R_2 + R_3 = ((R_1 \ast) \cdot R_2) + R_3$
Definition: Regexps Represent Languages

The regexp $\sigma \in \Sigma$ represents the language \{\sigma\}

The regexp ϵ represents \{\epsilon\}

The regexp \emptyset represents \emptyset

If R_1 and R_2 are regular expressions representing L_1 and L_2 then:

$(R_1 R_2)$ represents $L_1 \cdot L_2$

$(R_1 + R_2)$ represents $L_1 \cup L_2$

$(R_1)^*$ represents L_1^*

Example: $(10 + 0^*1)$ represents \{0k1 | $k \geq 0\} \cup \{10\}$
Regexp Represent Languages

For every regexp R, define $L(R)$ to be the language that R represents

A string $w \in \Sigma^*$ is accepted by R (or, w matches R) if $w \in L(R)$

Example: 01010 matches the regexp $(01)^*0$
Assume $\Sigma = \{0,1\}$

$\{ w \mid w \text{ has exactly a single } 1 \}$

0^*10^*
What language does the regexp \emptyset^* represent?

$\{\varepsilon\}$
Assume $\Sigma = \{0,1\}$

\{ w \mid w has length ≥ 3 and its 3rd symbol is 0 \}

$(0+1)(0+1)0(0+1)^*$
Assume $\Sigma = \{0,1\}$

$\{ w \mid \text{every odd position in } w \text{ is a 1} \}$

$(1(0 + 1))^*(1 + \varepsilon)$
DFAs \equiv NFAs \equiv Regular Expressions!

L can be represented by some regexp
\iff L is regular
L can be represented by some regexp
⇒ L is regular
Given any regexp R, we will construct an NFA N s.t. N accepts \textit{exactly} the strings accepted by R

Proof by induction on the \textit{length} of the regexp R:

Base Cases (R has length 1):

$R = \sigma$

$R = \varepsilon$

$R = \emptyset$
Induction Step: Suppose every regexp of length < k represents some regular language.

Consider a regexp R of length k > 1

Three possibilities for R:

\[R = R_1 + R_2 \]

\[R = R_1 R_2 \]

\[R = (R_1)^* \]
Induction Step: Suppose every regexp of length < k represents some regular language.

Consider a regexp R of length k > 1

Three possibilities for R:

\(R = R_1 + R_2 \)
By induction, \(R_1 \) and \(R_2 \) represent some regular languages, \(L_1 \) and \(L_2 \)

\(R = R_1 R_2 \)
But \(L(R) = L(R_1 + R_2) = L_1 \cup L_2 \)

\(R = (R_1)^* \)
so \(L(R) \) is regular, by the union theorem!
Induction Step: Suppose every regexp of length < k represents some regular language.

Consider a regexp R of length k > 1

Three possibilities for R:

\[R = R_1 + R_2 \] By induction, \(R_1 \) and \(R_2 \) represent some regular languages, \(L_1 \) and \(L_2 \)

\[R = R_1 \cdot R_2 \] But \(L(R) = L(R_1 \cdot R_2) = L_1 \cdot L_2 \)

\[R = (R_1)^* \] so \(L(R) \) is regular by the concatenation theorem
Induction Step: Suppose every regexp of length $< k$ represents some regular language.

Consider a regexp R of length $k > 1$

Three possibilities for R:

1. $R = R_1 + R_2$ By induction, R_1 and R_2 represent some regular languages, L_1 and L_2
2. $R = R_1 R_2$ But $L(R) = L(R_1^*) = L_1^*$
3. $R = (R_1)^*$ so $L(R)$ is regular, by the *star theorem*
Induction Step: Suppose every regexp of length < k represents some regular language.

Consider a regexp R of length $k > 1$

Three possibilities for R:

- $R = R_1 + R_2$ By induction, R_1 and R_2 represent some regular languages, L_1 and L_2
- $R = R_1 R_2$ But $L(R) = L(R_1^*) = L_1^*$
- $R = (R_1)^*$ so $L(R)$ is regular, by the *star theorem*

Therefore: If L is represented by a regexp, then L is regular
Give an NFA that accepts the language represented by \((1(0+1))^*\)

Regular expression: \((1(0+1))^*\)
Generalized NFAs (GNFA)

L can be represented by a regexp

\[\L \text{ is a regular language} \]

Idea: Transform an NFA for \(L \) into a regular expression by removing states and re-labeling the arcs with \textit{regular expressions}.

Rather than reading in just 0 or 1 letters from the string on a step, we can read in \textit{entire substrings}.
A GNFA is a 5-tuple $G = (Q, \Sigma, R, q_{\text{start}}, q_{\text{accept}})$

Q, Σ are states and alphabet

$R : (Q-{q_{\text{accept}}}) \times (Q-{q_{\text{start}}}) \rightarrow \mathcal{R}$

is the transition function

$q_{\text{start}} \in Q$ is the start state

$q_{\text{accept}} \in Q$ is the (unique) accept state

$\mathcal{R} = \text{set of all regular expressions over } \Sigma$
A GNFA is a 5-tuple \(G = (Q, \Sigma, R, q_{\text{start}}, q_{\text{accept}}) \)

Let \(w \in \Sigma^* \) and let \(G \) be a GNFA.

G accepts \(w \) if \(w \) can be written as \(w = w_1 \cdots w_k \)
where \(w_i \in \Sigma^* \) and there is a sequence
\(r_0, r_1, \ldots, r_k \in Q \) such that

- \(r_0 = q_{\text{start}} \)
- \(w_i \) matches \(R(r_{i-1}, r_i) \) for all \(i = 1, \ldots, k \), and
- \(r_k = q_{\text{accept}} \)

\(L(G) = \) set of all strings that \(G \) accepts
= “the language recognized by \(G \)”
This GNFA recognizes $L(a*b(cb)^*a)$

Is $aaabcbcbcba$ accepted or rejected?

Is bba accepted or rejected?

Is $bcba$ accepted or rejected?
Add unique start and accept states
While the machine has more than 2 states:

Pick an internal state, rip it out and re-label the arrows with regexps, to account for paths through the missing state.
While the machine has more than 2 states:

Pick an internal state, rip it out and re-label the arrows with regexps, to account for paths through the missing state.
While the machine has more than 2 states:

In general:
While the machine has more than 2 states:

In general:

\[R(q_1, q_2)R(q_2, q_2)^*R(q_2, q_3) + R(q_1, q_3) \]
\[R(q_0, q_3) = (a^* b)(a+b)^* \]
represents \(L(N) \)
$R(q_0,q_3) = (a*b)(a+b)^*$
represents $L(N)$
\(R(q_0, q_3) = (a*b)(a+b)^* \)

represents \(L(N) \)
Formally: Given an DFA, add q_{start} and q_{acc} to create G

For all q,q', define $R(q,q')$ to be σ if $\delta(q,\sigma) = q'$, else \emptyset

CONVERT(G): *(Takes a GNFA, outputs a regexp)*

If $\#\text{states} = 2$ return $R(q_{start}, q_{acc})$

If $\#\text{states} > 2$

select $q_{rip} \in Q$ different from q_{start} and q_{acc}

define $Q' = Q - \{q_{rip}\}$

define R' on $Q' - \{q_{acc}\} \times Q' - \{q_{start}\}$ as:

$$R'(q_i,q_j) = R(q_i,q_{rip})R(q_{rip},q_{rip})^*R(q_{rip},q_j) + R(q_i,q_j)$$

return $\text{CONVERT}(G')$

Claim: $L(G') = L(G)$
Theorem: Let \(R = \text{CONVERT}(G) \). Then \(L(R) = L(G) \).

Proof by induction on \(k \), the number of states in \(G \)

Base Case: \(k = 2 \) \(\text{CONVERT} \) outputs \(R(q_{\text{start}}, q_{\text{acc}}) \)

Inductive Step:

Assume theorem is true for \(k-1 \) state GNFAAs

Let \(G \) have \(k \) states. Let \(G' \) be the \(k-1 \) state GNFA obtained by ripping out a state.

We already claimed that \(L(G) = L(G') \)

\(G' \) has \(k-1 \) states, so by induction,

\[L(G') = L(\text{CONVERT}(G')) = L(R) \]

Therefore \(L(R) = L(G) \). \(\text{QED} \)
A finite automaton with the following transitions:

- From q_1 to q_1 on ε
- From q_1 to q_2 on $a + ba$
- From q_2 to q_1 on a
- From q_2 to q_2 on b
- From q_2 to the sink state on ε
- From the sink state to q_1 on bb
- From the sink state to q_2 on b
\[bb + (a + ba)b^*a \]

\[(bb + (a + ba)b^*a)^* (b + (a + ba)b^*) \]
Convert the NFA to a regular expression
Convert the NFA to a regular expression
Convert the NFA to a regular expression

$(a + b)b^*b$
Convert the NFA to a regular expression

\[((a + b)b^*b(bb^*b)^*a)^*(\varepsilon + (a + b)b^*b(bb^*b)^*) \]
DFAs \rightleftharpoons NFAs

\downarrow \quad \uparrow

Regular Languages \rightleftharpoons Regular Expressions

\begin{align*}
\text{DEFINITION}
\end{align*}
Some Languages Are Not Regular:

Limitations on DFAs
Regular or Not?

\[C = \{ w \mid w \text{ has equal number of } 1\text{s and } 0\text{s} \}, \]

NOT REGULAR!

\[D = \{ w \mid w \text{ has equal number of occurrences of } 01 \text{ and } 10 \}; \]

REGULAR!
\{ w \mid w \text{ has equal number of occurrences of 01 and 10}\}

= \{ w \mid w = 1, w = 0, \text{ or } w = \varepsilon, \text{ or } w \text{ starts with a 0 and ends with a 0, or } w \text{ starts with a 1 and ends with a 1} \}

1 + 0 + \varepsilon + 0(0+1)^*0 + 1(0+1)^*1

Claim:
A string w has equal occurrences of 01 and 10
\iff w starts and ends with the same bit.
The Pumping Lemma: Structure in Regular Languages

Let L be a regular language

Then there is a positive integer P s.t.

- for all strings $w \in L$ with $|w| \geq P$
- there is a way to write $w = xyz$, where:

1. $|y| > 0$ (that is, $y \neq \varepsilon$)
2. $|xy| \leq P$
3. For all $i \geq 0$, $xy^i z \in L$

Why is it called the pumping lemma? The word w gets *pumped* into longer and longer strings...
Proof: Let M be a DFA that recognizes L

Let P be the number of states in M

Let w be a string where $w \in L$ and $|w| \geq P$

We show: $w = xyz$

1. $|y| > 0$
2. $|xy| \leq P$
3. $xy^iz \in L$ for all $i \geq 0$

There must exist j and k such that $0 \leq j < k \leq P$, and $q_j = q_k$
Let’s prove that $B = \{0^n1^n \mid n \geq 0\}$ is not regular.

By contradiction. Assume B is regular. Let P be the number of states in a DFA for B. Let $w = 0^P1^P$

If B is regular, then there is a way to write w as $w = xyz$, $|y| > 0$, $|xy| \leq P$, and for all $i \geq 0$, xy^iz is also in B.

Claim: The string y must be all zeroes.

Why? Because $|xy| \leq P$ and $w = xyz = 0^P1^P$

But then $xxyyz$ has more 0s than 1s. Contradiction!
end