CS 154

Finite Automata,
Nondeterminism,
Regular Expressions
Read string left to right

The DFA accepts a string if the process ends in a double circle
A DFA is a 5-tuple $M = (Q, \Sigma, \delta, q_0, F)$

- Q is the set of states (finite)
- Σ is the alphabet (finite)
- $\delta : Q \times \Sigma \rightarrow Q$ is the transition function
- $q_0 \in Q$ is the start state
- $F \subseteq Q$ is the set of accept/final states

$L(M) = \text{set of all strings that } M \text{ accepts}$

= “the language recognized by M”
A DFA is a 5-tuple $M = (Q, \Sigma, \delta, q_0, F)$

$L(M) = \text{set of all strings that } M \text{ accepts}$

$= \text{“the language recognized by } M\text{”}$

Definition: A language L is regular if it is recognized by a DFA; that is, there is a DFA M where $L = L(M)$.
Union Theorem for Regular Languages

The union of two regular languages is also a regular language

Intersection Theorem for Regular Languages

The intersection of two regular languages is also a regular language
Complement Theorem for Regular Languages

The complement of a regular language is also a regular language
The **Reverse** of a Language

Reverse of L:

\[L^R = \{ w_1 \ldots w_k \mid w_k \ldots w_1 \in L, w_i \in \Sigma \} \]

If L is recognized by the usual kind of DFA, then \(L^R \) is recognized by a DFA that reads its strings from *right to left*!

Question: If L is regular, then is \(L^R \) also regular?

Can every “Right-to-Left” DFA be replaced by a normal “Left-to-Right” DFA?
Suppose our machine reads strings from right to left... Then $L(M) = \{w \mid w$ ends with a 1$\}$. Is this regular?
Reversing DFAs

Assume L is a regular language. Let M be a DFA that recognizes L

We’ll build a machine M^R that accepts L^R

If M accepts w, then w describes a directed path in M from start to an accept

First Attempt: Try to define M^R as M with the arrows reversed, turn start state into a final state, turn final states into starts
Problem: M^R IS NOT ALWAYS A DFA!

It could have many start states

Some states may have *more than one* outgoing edge, or none at all!
What happens with 100?

We will say this new machine accepts a string x if there is some path reading in x that reaches some accept state from some start state.
Non-deterministic Finite Automata (NFA)

Then, this machine recognizes: \{w \mid w \text{ contains 100}\}

We will say this new machine accepts a string \(x\) if

\textit{there is some path reading in }x\textit{ that reaches some accept state from some start state}
Another Example of an NFA

At each state, we can have any number of out arrows for a letter $\sigma \in \Sigma$, including ϵ.

Set of strings accepted by this NFA = $\{w \mid w$ contains a 0$\}$
Multiple Start States

We allow *multiple* start states for NFAs, and Sipser allows only one

Can easily convert NFA with many start states into one with a single start state:
A non-deterministic finite automaton (NFA) is a 5-tuple $N = (Q, \Sigma, \delta, Q_0, F)$ where

- Q is the set of states
- Σ is the alphabet
- $\delta : Q \times \Sigma_\varepsilon \to 2^Q$ is the transition function
- $Q_0 \subseteq Q$ is the set of start states
- $F \subseteq Q$ is the set of accept states

2^Q is the set of all possible subsets of Q

$\Sigma_\varepsilon = \Sigma \cup \{\varepsilon\}$
Def. Let \(w \in \Sigma^* \). Let \(N \) be an NFA. \(N \) accepts \(w \) if there’s a sequence of states \(r_0, r_1, ..., r_k \in Q \) and \(w \) can be written as \(w_1...w_k \) with \(w_i \in \Sigma \cup \{\varepsilon\} \) such that

1. \(r_0 \in Q_0 \)
2. \(r_{i+1} \in \delta(r_i, w_{i+1}) \) for all \(i = 0, ..., k-1 \), and
3. \(r_n \in F \)

\[L(N) = \text{the language recognized by } N \]
\[= \text{set of all strings machine } N \text{ accepts} \]

A language \(L' \) is recognized by an NFA \(N \) if \(L' = L(N) \).
N = (Q, Σ, δ, Q₀, F)
Q = \{q₁, q₂, q₃, q₄\}
Σ = \{0,1\}
Q₀ = \{q₁, q₂\}
F = \{q₄\}
δ(q₂,1) = \{q₄\}
δ(q₃,1) = \emptyset
δ(q₁,0) = \{q₃\}

L(N) = \{1,00,01\}
Deterministic Computation

accept or reject

Non-Deterministic Computation

accept

Are these equally powerful???
NFAs are generally simpler than DFAs

A DFA recognizing the language \{1\}

An NFA recognizing the language \{1\}
Every NFA can be perfectly simulated by some DFA!

Theorem: For every NFA \(N \), there is a DFA \(M \) such that \(L(M) = L(N) \)

Corollary: A language \(L \) is regular if and only if \(L \) is recognized by an NFA

Corollary: \(L \) is regular iff \(L^R \) is regular
From NFAs to DFAs

Input: NFA \(N = (Q, \Sigma, \delta, Q_0, F) \)

Output: DFA \(M = (Q', \Sigma, \delta', q_0', F') \)

To learn if an NFA accepts, we could do the computation in parallel, maintaining the set of all possible states that can be reached.

Idea:

Set \(Q' = 2^Q \)
From NFAs to DFAs: Subset Construction

Input: NFA \(N = (Q, \Sigma, \delta, Q_0, F) \)

Output: DFA \(M = (Q', \Sigma, \delta', q_0', F') \)

\[
Q' = 2^Q \\
\delta' : Q' \times \Sigma \rightarrow Q' \\
\delta'(R, \sigma) = \bigcup_{r \in R} \varepsilon(\delta(r, \sigma)) \quad (*) \\
q_0' = \varepsilon(Q_0) \\
F' = \{ R \in Q' \mid f \in R \text{ for some } f \in F \} \\
\]

\((*) \) \(For \ S \subseteq Q, \text{ the } \varepsilon\text{-closure of } S \text{ is} \)
\[
\varepsilon(S) = \{ q \in Q \text{ reachable from some } s \in S \text{ by taking } 0 \text{ or more } \varepsilon \text{ transitions} \} \\
\]
Example of the ε-closure

$\varepsilon(\{q_0\}) = \{q_0, q_1, q_2\}$

$\varepsilon(\{q_1\}) = \{q_1, q_2\}$

$\varepsilon(\{q_2\}) = \{q_2\}$
Given: NFA $N = (\{1,2,3\}, \{a,b\}, \delta, \{1\}, \{1\})$

Construct: Equivalent DFA M

$M = (2^{\{1,2,3\}}, \{a,b\}, \delta', \{1,3\}, ...)$

$\varepsilon(\{1\}) = \{1,3\}$
Reverse Theorem for Regular Languages

The reverse of a regular language is also a regular language

If a language can be recognized by a DFA that reads strings from right to left, then there is an “normal” DFA that accepts the same language

Proof?

Given a DFA for a language L, “reverse” its arrows and flip its start and accept states, getting an NFA. Convert that NFA back to a DFA.
Using NFAs in place of DFAs can make proofs about regular languages *much* easier!

Remember this on homework/exams!
Union Theorem using NFAs?
Regular Languages are closed under concatenation

Concatenation: \(A \cdot B = \{ vw | v \in A \text{ and } w \in B \} \)

Given DFAs \(M_1 \) and \(M_2 \), connect the accept states of \(M_1 \) to the start states of \(M_2 \)

\[L(N) = L(M_1) \cdot L(M_2) \]
Regular Languages are closed under star

\[A^* = \{ s_1 \ldots s_k \mid k \geq 0 \text{ and each } s_i \in A \} \]

Let M be a DFA, and let \(L = L(M) \)

We can construct an NFA N that recognizes \(L^* \)
Formally, the construction is:

Input: DFA $M = (Q, \Sigma, \delta, q_1, F)$

Output: NFA $N = (Q', \Sigma, \delta', \{q_0\}, F')$

- $Q' = Q \cup \{q_0\}$
- $F' = F \cup \{q_0\}$

$$
\delta'(q,a) = \begin{cases}
\{\delta(q,a)\} & \text{if } q \in Q \text{ and } a \neq \varepsilon \\
\{q_1\} & \text{if } q \in F \text{ and } a = \varepsilon \\
\{q_1\} & \text{if } q = q_0 \text{ and } a = \varepsilon \\
\emptyset & \text{if } q = q_0 \text{ and } a \neq \varepsilon \\
\emptyset & \text{else}
\end{cases}
$$
Regular Languages are closed under star

How would we *prove* that this NFA construction works?

Want to show: $L(N) = L^*$

1. $L(N) \supseteq L^*$

2. $L(N) \subseteq L^*$
1. \(L(N) \supseteq L^* \)

Assume \(w = w_1...w_k \) is in \(L^* \) where \(w_1,...,w_k \in L \)

We show \(N \) accepts \(w \) by induction on \(k \)

Base Cases:

\[\begin{align*}
\checkmark & \quad k = 0 \quad (w = \varepsilon) \\
\checkmark & \quad k = 1 \quad (w \in L)
\end{align*} \]

Inductive Step:

Assume \(N \) accepts all strings \(v = v_1...v_k \in L^* , v_i \in L \)

Let \(u = u_1...u_ku_{k+1} \in L^* , u_j \in L \)

Since \(N \) accepts \(u_1...u_k \) (by induction) and \(M \) accepts \(u_{k+1} \), \(N \) also accepts \(u \) (by construction)
Assume w is accepted by N; we want to show $w \in L^*$

If $w = \varepsilon$, then $w \in L^*$

I.H. N accepts u and takes at most k ε-transitions $\Rightarrow u \in L^*$

Let w be accepted by N with $k+1$.

Write w as $w = uv$, where v is the substring read after the last ε-transition
Regular Languages are closed under all of the following operations:

→ **Union:** \(A \cup B = \{ w | w \in A \text{ or } w \in B \} \)

→ **Intersection:** \(A \cap B = \{ w | w \in A \text{ and } w \in B \} \)

→ **Complement:** \(\neg A = \{ w \in \Sigma^* | w \notin A \} \)

→ **Reverse:** \(A^R = \{ w_1 \ldots w_k | w_k \ldots w_1 \in A \} \)

→ **Concatenation:** \(A \cdot B = \{ vw | v \in A \text{ and } w \in B \} \)

→ **Star:** \(A^* = \{ w_1 \ldots w_k | k \geq 0 \text{ and each } w_i \in A \} \)
Homework 1 is coming out today... watch for it!
Regular Expressions
Inductive Definition of Regexp

Let Σ be an alphabet. We define the regular expressions over Σ inductively:

For all \(\sigma \in \Sigma \), \(\sigma \) is a regexp

\(\varepsilon \) is a regexp

\(\emptyset \) is a regexp

If \(R_1 \) and \(R_2 \) are both regexps, then

\((R_1 R_2) \), \((R_1 + R_2) \), and \((R_1)^* \) are regexps
Precedence Order: \ast

then \cdot

then $+$

Example: $R_1 \ast R_2 + R_3 = ((R_1 \ast) \cdot R_2) + R_3$
Definition: Regexps Represent Languages

The regexp $\sigma \in \Sigma$ *represents* the language $\{\sigma\}$

The regexp ε represents $\{\varepsilon\}$

The regexp \emptyset represents \emptyset

If R_1 and R_2 are regular expressions representing L_1 and L_2 then:

$(R_1 R_2)$ represents $L_1 \cdot L_2$

$(R_1 + R_2)$ represents $L_1 \cup L_2$

$(R_1)^*$ represents L_1^*
Regexp Represents Languages

For every regexp R, define $L(R)$ to be the language that R represents

A string $w \in \Sigma^*$ is accepted by R (or, w matches R) if $w \in L(R)$

Example: 01010 matches the regexp (01)*0
end