CS 154

Lecture 12:
Foundations of Math and Kolmogorov Complexity
Computability and the Foundations of Mathematics
The Foundations of Mathematics

A *formal system* describes a formal language for
- writing (finite) mathematical statements,
- has a definition of what statements are “true”
- has a definition of a proof of a statement

Example: Every TM M defines some formal system \mathcal{F}

- \{Mathematical statements in \mathcal{F}\} = Σ^*
 String w represents the statement “M accepts w”
- \{True statements in \mathcal{F}\} = $L(M)$
- A proof that “M accepts w” can be defined to be an accepting computation history for M on w
Consistency and Completeness

A formal system F is **consistent** or **sound** if no false statement has a valid proof in F
(Proof in F implies Truth in F)

A formal system F is **complete** if every true statement has a valid proof in F
(Truth in F implies Proof in F)
Interesting Formal Systems

Define a formal system \mathcal{F} to be *interesting* if:

1. Any mathematical statement about computation can be (computably) described as a statement of \mathcal{F}. Given (M, w), there is a (computable) $S_{M,w}$ in \mathcal{F} such that $S_{M,w}$ is true in \mathcal{F} if and only if M accepts w.

2. Proofs are “convincing” – a TM can check that a proof of a theorem is correct. This set is decidable: $\{(S, P) \mid P$ a proof of S in $\mathcal{F}\}$

3. If S is in \mathcal{F} and there is a proof of S describable as a computation, then there’s a proof of S in \mathcal{F}. If M accepts w, then there is a proof P in \mathcal{F} of $S_{M,w}$
Limitations on Mathematics

For every consistent and interesting F,

Theorem 1. (Gödel 1931) F is incomplete: There are mathematical statements in F that are true but cannot be proved in F.

Theorem 2. (Gödel 1931) The consistency of F cannot be proved in F.

Theorem 3. (Church-Turing 1936) The problem of checking whether a given statement in F has a proof is undecidable.
Proof: Define Turing machine G(x):
1. Obtain own description G [Recursion Theorem]
2. Construct statement \(S' = \neg S_G, \varepsilon \)
3. Search for a proof of \(S' \) in \(F \) over all finite length strings. Accept if a proof is found.

Claim: \(S' \) is true in \(F \), but has no proof in \(F \)
\(S' \) basically says “There is no proof of \(S' \) in \(F \)”
(Gödel 1931) The consistency of \mathcal{F} cannot be proved within any interesting consistent \mathcal{F}

Proof: Suppose we can prove “\mathcal{F} is consistent” in \mathcal{F}
We constructed $\neg S_{G,\epsilon} = "G$ does not accept $\epsilon"$ which we showed is true, but has no proof in \mathcal{F}
G does not accept ϵ \iff There is no proof of $\neg S_{G,\epsilon}$ in \mathcal{F}

But if there’s a proof in \mathcal{F} of “\mathcal{F} is consistent” then there is a proof in \mathcal{F} of $\neg S_{G,\epsilon}$ (here’s the proof):

“If $S_{G,\epsilon}$ is true, then there is a proof in \mathcal{F} of $\neg S_{G,\epsilon}$. \mathcal{F} is consistent, therefore $\neg S_{G,\epsilon}$ is true. But $S_{G,\epsilon}$ and $\neg S_{G,\epsilon}$ cannot both be true. Therefore, $\neg S_{G,\epsilon}$ is true”

This contradicts the previous theorem.
Proof: Suppose \(\text{PROVABLE}_\mathcal{F} \) is decidable with TM \(P \).

Then we can decide \(A_{\text{TM}} \) using the following procedure:

On input \((M, w)\), run the TM \(P \) on input \(S_{M,w} \)

If \(P \) accepts, examine all possible proofs in \(\mathcal{F} \)

If a proof of \(S_{M,w} \) is found then accept
If a proof of \(\neg S_{M,w} \) is found then reject

If \(P \) rejects, then reject.

Why does this work?
Kolmogorov Complexity: A Universal Theory of Data Compression
The Church-Turing Thesis:

Everyone’s
Intuitive Notion = Turing Machines of Algorithms

This is not a theorem –
* it is a falsifiable scientific hypothesis.

A Universal Theory of Computation
Is there a Universal Theory of \textit{Information}?

Can we quantify how much \textit{information} is contained in a string?

A = 01010101010101010101010101010101

B = 110010011101110101101001011001011

Idea: The more we can “compress” a string, the less “information” it contains....
Information as Description

Thesis: The amount of information in a string = Shortest way of describing that string

How should we “describe” strings?

Use Turing machines with inputs!

Let $x \in \{0,1\}^*$

Definition: The shortest description of x, denoted as $d(x)$, is the lexicographically shortest string $<M,w>$ such that $M(w)$ halts with only x on its tape.
A Specific Pairing Function

Theorem. There is a 1-1 computable function $\langle , \rangle : \Sigma^* \times \Sigma^* \rightarrow \Sigma^*$ and computable functions π_1 and $\pi_2 : \Sigma^* \rightarrow \Sigma^*$ such that:

$$z = \langle M, w \rangle \iff \pi_1(z) = M \text{ and } \pi_2(z) = w$$

For $x_i \in \Sigma$, let $Z(x_1 \ x_2 \ldots \ x_k) = 0 \ x_1 \ 0 \ x_2 \ldots \ 0 \ x_k \ 1$

Then we can define:

$$\langle M, w \rangle := Z(M) \ w$$

(Example: $\langle 10110,101 \rangle = 01000101001101$)

Note that $|\langle M, w \rangle| = 2|M| + |w| + 1$
Kolmogorov Complexity (1960’s)

Definition: The shortest description of x, denoted as $d(x)$, is the lexicographically shortest string $<M, w>$ such that $M(w)$ halts with only x on its tape.

Definition: The Kolmogorov complexity of x, denoted as $K(x)$, is $|d(x)|$.

EXAMPLES??
Let’s first determine some properties of K. Examples will fall out of this.
Kolmogorov Complexity

Theorem: There is a fixed c so that for all x in $\{0,1\}^*$

\[K(x) \leq |x| + c \]

“The amount of information in x isn’t much more than $|x|$”

Proof: Define a TM M = “On input w, halt.”

On any string x, $M(x)$ halts with x on its tape.

Let $c = 2|M| + 1$

Then $K(x) \leq |<M,x>| \leq 2|M| + |x| + 1 \leq |x| + c$
Repetitive Strings have Low Information

Theorem: There is a fixed \(c \) so that for all \(x \in \{0,1\}^* \)
\[
K(xx) \leq K(x) + c
\]

“The information in xx isn’t much more than that in x”

Proof: Let \(N = “\text{On } <M,w>, \text{ let } s = M(w). \text{ Print } ss.” \)

Suppose \(<M,w> \) is the shortest description of \(x \).
Then \(<N,<M,w>> \) is a description of \(xx \)

Therefore
\[
K(xx) \leq |<N,<M,w>>| \leq 2|N| + |<M,w>| + 1
\leq 2|N| + K(x) + 1 \leq c + K(x)
\]
Repetitive Strings have Low Information

Corollary: There is a fixed c so that for all $n \geq 2$, and all $x \in \{0,1\}^*$, $K(x^n) \leq K(x) + c \log n$

“The information in x^n isn’t much more than that in x”

Proof: Define the TM

$N = \text{“On input } <n,M,w>, \text{ Let } x = M(w). \text{ Print } x \text{ for } n \text{ times.”}$

Let $<M,w>$ be the shortest description of x.

Then $K(x^n) \leq K(<N,<n,M,w>>) \leq 2|N| + d \log n + K(x) \\
\leq c \log n + K(x)$

for some constant c and d
Repetitive Strings have Low Information

Corollary: There is a fixed c so that for all $n \geq 2$, and all $x \in \{0,1\}^*$, $K(x^n) \leq K(x) + c \log n$

“The information in x^n isn’t much more than that in x”

Recall:

$A = 01010101010101010101010101010101$

For $w = (01)^n$, $K(w) \leq K(01) + c \log_2 n$

So for all n, $K((01)^n) \leq d + c \log_2 n$ for a fixed c, d
Does The Computational Model Matter?

Turing machines are one “programming language.” If we use other programming languages, could we get significantly shorter descriptions?

An interpreter is a “semi-computable” function

\[p : \Sigma^* \rightarrow \Sigma^* \]

Takes programs as input, and (may) print their outputs

Definition: Let \(x \in \{0,1\}^* \). The shortest description of \(x \) under \(p \), called \(d_p(x) \), is the lexicographically shortest string \(w \) for which \(p(w) = x \).

Definition: The \(K_p \) complexity of \(x \) is \(K_p(x) := |d_p(x)| \).
Does The Computational Model Matter?

Theorem: For every interpreter p, there is an integer c so that for all $x \in \{0,1\}^*$, $K(x) \leq K_p(x) + c$

Moral: Using another programming language would only change $K(x)$ by some additive constant

Proof: Define $M =$ “On w, simulate $p(w)$ and write its output to tape”

Then $<M,d_p(x)>$ is a description of x, and

$$K(x) \leq |<M,d_p(x)>|$$

$$\leq 2|M| + K_p(x) + 1 \leq c + K_p(x)$$
There Exist Incompressible Strings

Theorem: For all n, there is an $x \in \{0,1\}^n$ such that $K(x) \geq n$

“There are incompressible strings of every length”

Proof: $(\text{Number of binary strings of length } n) = 2^n$
but $(\text{Number of descriptions of length } < n) \leq (\text{Number of binary strings of length } < n)$
$= 1 + 2 + 4 + \cdots + 2^{n-1} = 2^n - 1$

Therefore there is at least one n-bit string x that does not have a description of length $< n$
Random Strings Are Incompressible!

Theorem: For all n and $c \geq 1$,

$$\Pr_{x \in \{0,1\}^n}[K(x) \geq n-c] \geq 1 - \frac{1}{2^c}$$

“Most strings are highly incompressible”

Proof: (Number of binary strings of length n) = 2^n
but (Number of descriptions of length < $n-c$)
\leq (Number of binary strings of length < $n-c$)
= $2^{n-c} - 1$

Hence the probability that a random x satisfies

$K(x) < n-c$

is at most $(2^{n-c} - 1)/2^n < 1/2^c$.
Kolmogorov Complexity: Try it!

Give short algorithms for generating the strings:

1. 01000110110000010100111001011101110000
2. 123581321345589144233377610987
3. 126241207205040403203628803628800
Kolmogorov Complexity: Try it!

Give short algorithms for generating the strings:

1. 01000110110000010100111001011101110000
2. 123581321345589144233377610987
3. 126241207205040403203628803628800
Kolmogorov Complexity: Try it!

Give short algorithms for generating the strings:

1. 0100011010111000010100111001011101110000

2. 123581321345589144233377610987

3. 126241207205040403203628803628800
Kolmogorov Complexity: Try it!

Give short algorithms for generating the strings:

1. 01000110110000010100111001011101110000
2. 123581321345589144233377610987
3. 126241207205040403203628803628800

This seems hard to determine in general. Why? We’ll give a formal answer in just one moment...
KOLMOGOROV DIRECTIONS

HOW DO I GET TO YOUR PLACE FROM LEXINGTON?

Hmm...

OK, STARTING FROM YOUR DRIVEWAY, TAKE EVERY LEFT THAT DOESN'T PUT YOU ON A PRIME-NUMBERED HIGHWAY OR STREET NAMED FOR A PRESIDENT.

WHEN PEOPLE ASK FOR STEP-BY-STEP DIRECTIONS, I WORRY THAT THERE WILL BE TOO MANY STEPS TO REMEMBER, SO I TRY TO PUT THEM IN MINIMAL FORM.
Determining Compressibility

Can an algorithm perform optimal compression? Can algorithms tell us if a given string is compressible?

\[\text{COMPRESS} = \{ (x,c) \mid K(x) \leq c \} \]

Theorem: COMPRESS is undecidable!

Intuition: If decidable, we could design an algorithm that prints the shortest incompressible string of length \(n \)

But such a string could then be succinctly described, by providing the algorithm code and \(n \) in binary!

Berry Paradox: “The smallest integer that cannot be defined in less than thirteen words.”
Determining Compressibility

\[
\text{COMPRESS} = \{(x, c) \mid K(x) \leq c\}
\]

Theorem: COMPRESS is undecidable!

Proof: Suppose it’s decidable. Consider the TM:

\[M = \text{“On input } x \in \{0,1\}^*, \text{ interpret } x \text{ as a number } N. \]
\[\text{For all } y \in \{0,1\}^* \text{ in lexicographical order,}
\]
\[\text{If } (y,N) \notin \text{COMPRESS then print } y \text{ and halt.”}
\]

M(x) prints the shortest string y’ with K(y’) > N.

But <M,x> describes y’, and |<M,x>| ≤ d + log N

So N < K(y’) ≤ d + 2 log N. CONTRADICTION!