Next Tuesday (2/17)

Your Midterm: At 12:50pm, in Bishop Auditorium
(see website for more information)

Today: instead of a new homework, you’ll get a practice midterm

Don’t panic!

Practice midterm will be harder than midterm
Next Tuesday (2/17)

Your Midterm: At 12:50pm, in Bishop Auditorium

FAQ: What is fair game for the midterm?
Everything up to this lecture

FAQ: Can I bring notes?
Yes, one single-sided sheet of notes, letter paper
Definition: A decidable predicate $R(x,y)$ is a proposition about the input strings x and y, such that some TM M implements R. That is,

for all x, y,
$R(x,y)$ is TRUE \Rightarrow $M(x,y)$ accepts
$R(x,y)$ is FALSE \Rightarrow $M(x,y)$ rejects

Can think of R as a function from $\Sigma^* \times \Sigma^* \rightarrow \{\text{T,F}\}$

EXAMPLES:
$R(x,y) =$ “xy has at most 100 zeroes”
$R(N,y) =$ “TM N halts on y in at most 99 steps”

Proposition: A is decidable if and only if there is some decidable predicate R such that $A = \{x \mid R(x,\varepsilon)\}$
Theorem: A language A is *recognizable* if and only if there is a decidable predicate $R(x, y)$ such that:

$$A = \{ x \mid \exists y \ R(x, y) \}$$

Proof: (1) If $A = \{ x \mid \exists y \ R(x,y) \}$ then A is recognizable

A TM can enumerate over all y’s and try them in R. If there is a y s.t. $R(x,y)$ accepts, it will be found

(2) If A is recognizable, then $A = \{ x \mid \exists y \ R(x,y) \}$

Let M recognize A.
Let $R(x,y)$ be TRUE iff M accepts x in $|y|$ steps

M accepts $x \iff \exists y \ R(x,y)$
Mapping Reductions

$f : \Sigma^* \rightarrow \Sigma^*$ is a \textit{computable function} if there is a Turing machine M that halts with just $f(w)$ written on its tape, for every input w.

A language A is \textit{mapping reducible} to language B, written as $A \leq_m B$, if there is a computable $f : \Sigma^* \rightarrow \Sigma^*$ such that for every w,

$$w \in A \iff f(w) \in B$$

f is called a mapping reduction (or many-one reduction) from A to B.

Theorem: If \(A \leq_m B \) and \(B \) is decidable, then \(A \) is decidable

Corollary: If \(A \leq_m B \) and \(A \) is undecidable, then \(B \) is undecidable

Theorem: If \(A \leq_m B \) and \(B \) is recognizable, then \(A \) is recognizable

Corollary: If \(A \leq_m B \) and \(A \) is unrecognizable, then \(B \) is unrecognizable
Theorem: \(A_{TM} \leq_m HALT_{TM} \)

\[f(z) := \text{Decode } z \text{ into a pair } (M, w) \]

Construct \(M' \) with the specification:
“\(M'(w) = \text{Simulate } M \text{ on } w. \)
if \(M(w) \) accepts then \textit{accept}
else \textit{loop forever}”

Output \((M', w) \)

We have \(z \in A_{TM} \iff (M', w) \in HALT_{TM} \)
Theorem: $A_{TM} \leq_m \text{HALT}_{TM}$

Corollary: $\neg A_{TM} \leq_m \neg \text{HALT}_{TM}$

Proof?

Corollary: $\neg \text{HALT}_{TM}$ is unrecognizable!

Proof: If $\neg \text{HALT}_{TM}$ were recognizable, then $\neg A_{TM}$ would be recognizable...
Theorem: $\text{HALT}_{TM} \leq_m A_{TM}$

Proof: Define the computable function:

$$f(z) := \text{Decode } z \text{ into a pair } (M, w)$$

Construct M' with the specification:

“$M'(w) = \text{Simulate } M \text{ on } w.$

If $M(w)$ halts then accept

else loop forever”

Output (M', w)

Observe $(M, w) \in \text{HALT}_{TM} \iff (M', w) \in A_{TM}$
Corollary: $\text{HALT}_{TM} \equiv_m \text{A}_{TM}$

Yo, T.M.! I can give you the magical power to either compute the halting problem, or the acceptance problem. Which do you want?

Wow, hm, so hard to choose...

I can’t decide!
The Emptiness Problem

\(\text{EMPTY}_{\text{DFA}} = \{ M \mid M \text{ is a DFA such that } L(M) = \emptyset \} \)

Given a DFA, does it reject every input?

Theorem: \(\text{EMPTY}_{\text{DFA}} \) is decidable

Why?

\(\text{EMPTY}_{\text{NFA}} = \{ M \mid M \text{ is a NFA such that } L(M) = \emptyset \} \)

\(\text{EMPTY}_{\text{REX}} = \{ R \mid R \text{ is a regexp such that } L(R) = \emptyset \} \)
The Emptiness Problem for TMs

\[\text{EMPTY}_{TM} = \{ M \mid M \text{ is a TM such that } L(M) = \emptyset \} \]

Given a program, does it reject every input?

Theorem: \(\text{EMPTY}_{TM} \) is *not recognizable*

Proof: Show that \(\neg A_{TM} \leq_m \text{EMPTY}_{TM} \)

\[f(z) := \text{Decode } z \text{ into a pair } (M, w). \]

Output a TM \(M' \) with the behavior:

\["M'(x) := \text{if } (x = w) \text{ then run } M(w) \text{ and output its answer, else reject}" \]

\[z \in A_{TM} \iff L(M') \neq \emptyset \]

\[\iff M' \notin \text{EMPTY}_{TM} \]

\[\iff f(z) \notin \text{EMPTY}_{TM} \]
The Equivalence Problem

\[EQ_{TM} = \{(M, N) \mid M, N \text{ are TMs and } L(M) = L(N)\} \]

Do two programs compute the same function?

Theorem: \(EQ_{TM} \) is *unrecognizable*

Proof: Reduce \(EMPTY_{TM} \) to \(EQ_{TM} \)

Let \(M_{\emptyset} \) be a “dummy” TM with no path from start state to accept state.

Define \(f(M) := (M, M_{\emptyset}) \)

\[M \in \text{EMPTY}_{TM} \iff L(M) = L(M_{\emptyset}) = \emptyset \iff (M, M_{\emptyset}) \in EQ_{TM} \]
Problem 1

\[\text{REVERSE} = \{ M \mid M \text{ is a TM with the property: for all } w, M(w) \text{ accepts } \Leftrightarrow M(w^R) \text{ accepts} \}. \]

Decidable or not?

REVERSE is undecidable.
Given a machine D for deciding the language REVERSE, we show how to decide A_{TM}.

$M(w)$ accepts $\rightarrow L(M_w) = \{01, 10\}$

$M(w)$ doesn’t accept $\rightarrow L(M_w) = \{01\}$
Problem 2 Undecidable

\{ (M, w) \mid M \text{ is a TM that on input } w, \text{ tries to move its head past the left end of the input} \}

Problem 3 Decidable

\{ (M, w) \mid M \text{ is a TM that on input } w, \text{ moves its head left at least once, at some point} \}
Problem 2 Undecidable

L’ = { (M, w) | M is a TM that on input w, tries to move its head past the left end of the input }

Proof: Reduce A_{TM} to L’

On input (M,w), make a TM N that shifts w over one cell, marks a special symbol $\$ on the leftmost cell, then simulates M(w) on the tape.
If M’s head moves to the cell with $\$ but has not yet accepted, N moves the head back to the right.
If M accepts, N tries to move its head past the $\$.

(M,w) is in A_{TM} if and only if (N,w) is in L’
Problem 3 Decidable

\{ (M, w) \mid M \text{ is a TM that on input } w, \text{ moves its head left at least once, at some point} \}

On input \((M,w)\), run \(M\) on \(w\) for
\[|Q_M| + |w| + 1 \]
steps.

\begin{align*}
\text{Accept} & \quad \text{If } M\text{'s head moved left at all} \\
\text{Reject} & \quad \text{Otherwise}
\end{align*}

(Why does this work?)
Rice’s Theorem

Suppose \(L \) is a language that satisfies two conditions:

1. **(Nontrivial)** There are TMs \(M_{\text{YES}} \) and \(M_{\text{NO}} \), where \(M_{\text{YES}} \in L \) and \(M_{\text{NO}} \notin L \)

2. **(Semantic)** For all TMs \(M_1 \) and \(M_2 \) such that \(L(M_1) = L(M_2) \), \(M_1 \in L \) if and only if \(M_2 \in L \)

Then, \(L \) is undecidable.

A Huge Hammer for Undecidability!
Examples and Non-Examples

<table>
<thead>
<tr>
<th>Semantic Properties $P(M)$</th>
<th>Not Semantic!</th>
</tr>
</thead>
<tbody>
<tr>
<td>• M accepts 0</td>
<td>• M halts and rejects 0</td>
</tr>
<tr>
<td>• for all w, $M(w)$ accepts iff $M(w^R)$ accepts</td>
<td>• M tries to move its head off the left end of the tape, on input 0</td>
</tr>
<tr>
<td>• $L(M) = {0}$</td>
<td>• M never moves its head left on input 0</td>
</tr>
<tr>
<td>• $L(M)$ is empty</td>
<td>• M has exactly 154 states</td>
</tr>
<tr>
<td>• $L(M) = \Sigma^*$</td>
<td>• M halts on all inputs</td>
</tr>
<tr>
<td>• M accepts 154 strings</td>
<td></td>
</tr>
</tbody>
</table>

$L = \{M \mid P(M) \text{ is true}\}$ is undecidable
Rice’s Theorem: Any nontrivial semantic L over Turing machines is undecidable.

Proof: We’ll reduce A_{TM} to the language L

Define M_{\emptyset} to be a TM that never halts

Suppose first that $M_{\emptyset} \notin L$

Let $M_{YES} \in L$ (such M_{YES} exists, by assumption)

Reduction from A_{TM} On input (M,w), output:

“$M_w(x) := \text{If } (M \text{ acc. } w) \& (M_{YES} \text{ acc. } x) \text{ then ACCEPT else REJECT}”$

If $M_{\emptyset} \in L$ instead, we can reduce $\neg A_{TM}$ to L. Output:

“$M_w(x) := \text{If } (M \text{ acc. } w) \& (M_{NO} \text{ acc. } x), \text{ then ACCEPT else REJECT}”$
The Regularity Problem for Turing Machines

\[\text{REGULAR}_\text{TM} = \{ M \mid M \text{ is a TM and } L(M) \text{ is regular} \} \]

Given a program, is it equivalent to some DFA?

Theorem: \(\text{REGULAR}_\text{TM} \) is not recognizable

Proof 1: Show that \(\overline{A_{\text{TM}}} \leq_m \text{REGULAR}_\text{TM} \)

\(f(z) := \text{Decode } z \text{ into } (M, w). \text{ Output a TM } M' : \)

\[
M'(x) := \begin{cases}
\text{run } M(w) & \text{if } x = 0^n 1^n \\
\text{reject} & \text{else}
\end{cases}
\]

\(z \in A_{\text{TM}} \Rightarrow f(z) = M' \text{ such that } M' \text{ accepts } \{0^n 1^n\} \)

\(z \notin A_{\text{TM}} \Rightarrow f(z) = M' \text{ such that } M' \text{ accepts nothing} \)

\(z \notin A_{\text{TM}} \iff f(M, w) \in \text{REGULAR}_\text{TM} \)
The Regularity Problem for Turing Machines

\[\text{REGULAR}_{\text{TM}} = \{ M \mid M \text{ is a TM and } L(M) \text{ is regular} \} \]

Given a program, is it equivalent to some DFA?

Theorem: \(\text{REGULAR}_{\text{TM}} \) is *not recognizable*

Proof 2: Use Rice’s Theorem!

\(\text{REGULAR}_{\text{TM}} \) is nontrivial:
- there’s an \(M_\emptyset \) which never halts: \(M_\emptyset \in \text{REGULAR}_{\text{TM}} \)
- there’s \(M' \) deciding \(\{0^n1^n \mid n \geq 0\} \): \(M' \notin \text{REGULAR}_{\text{TM}} \)

\(\text{REGULAR}_{\text{TM}} \) is semantic:
If \(L(M) = L(M') \) then \(L(M) \) is regular iff \(L(M') \) is regular, therefore \(M \in \text{REGULAR}_{\text{TM}} \) iff \(M' \in \text{REGULAR}_{\text{TM}} \)