
Neural Network Joint Language Model: An Investigation and
An Extension With Global Source Context

Yuhao Zhang
Computer Science Department

Stanford University
zyh@stanford.edu

Charles Ruizhongtai Qi
Department of Electrical Engineering

Stanford University
rqi@stanford.edu

Abstract

Recent work has shown success in us-
ing a neural network joint language model
that jointly model target language and its
aligned source language to improve ma-
chine translation performance. In this
project we first investigate a state-of-the-
art joint language model by studying ar-
chitectural and parametric factors through
experiments and visualizations. We then
propose an extension to this model that
incorporates global source context infor-
mation. Experiments show that the best
extension setting achieves 1.9% reduction
of test set perplexity on a French-English
data set. 1

1 Introduction

The construction of language model has always
been an important topic in NLP. Recently, lan-
guage models trained by neural networks (NNLM)
have achieved state-of-the-art performance in a
series of tasks like sentiment analysis and machine
translation. The key idea of NNLMs is to learn
distributive representation of words (aka. word
embeddings) and use neural network as a smooth
prediction function. In a specific application like
translation, we can build a stronger NNLM by
incorporating information from source sentences.
A recent work from ACL 2014 (Devlin et al.,
2014) achieved a 6+ BLEU score boost by using
both target words and source words to train a
neural network joint model (NNJM).

In this project, we implement the original
NNJM and design experiments to understand the
model’s strengths and weaknesses as well as how
hyper parameters affect performance and why

1This project is advised by Thang Luong and it is a solo
CS229 co-project for one of the authors.

they affect performance in specific ways. While
the original paper on NNJM focuses on presenting
the model and its performance gains, our project
focuses on gaining a deep and well-rounded
understanding of the model.

As an important part of the work, we also
extend the current NNJM with global context
of source sentences, based on the intuition that
long range dependency in source language is also
an important information source for modelling
target language. Besides target words and source
words, we compute sentence vectors from source
sentences in various ways and incorporate the
sentence vectors as an extra input into neural
networks.

Our contribution mainly lies in three aspects:
First, we present a deep dive into a state-of-the-art
joint language model, and discuss the factors that
influence the model with experimental results;
second, we propose a new approach that incor-
porates global source sentence information into
the original model, and present our experimental
results on a French-English parallel dataset; third,
as a side contribution, we have open-sourced2 our
implementation of both the two models, which
could be run on both CPU and GPU with no
additional effort.

The rest of this report is organized as follows.
We first give a brief introduction on NNJM in
Section 2. Then in Section 3 we present our
extensions: We introduce how we compute source
sentence vectors and why we make these design
choices. We then spend more space present our
insights on NNJM gained from experiments,
and evaluation of our extended NNJM model in
Section 5. We summarize related work in Section
6 and explore future directions for extending our

2http://goo.gl/WizzCF

http://goo.gl/WizzCF


current work in Section 7.

2 Neural Network Joint Model

Language model, in its essence, is assigning
probability to a sequence of words. For machine
translation application, language model is evalu-
ating translated target sentence in terms of how
likely or reasonable it is as a sentence in target
language. The intuition for a joint language model
is to utilize source sentence information to help
increase quality of the target language model.
Note that it is a privilege for machine translation
task since there is always a source sentence
available. BBN paper has shown and the NNJM
we implemented has also shown that by utilizing
source language information, a very significant
quality improvement of target language model
can be achieved.

In terms of how to make use of the extra infor-
mation of source sentence, an effective approach
proposed in the BBN paper is to extend normal
NNLMs by concatenating a context window of
source words with target n-gram as the input to
the model and train word representations (or em-
beddings) for both source and target languages. In
Section 3 we will also describe another extension
of NNLM of using source sentence vector as the
extra source of information.

2.1 Model Description
We use a similar model as the original neural
network joint model. To be concrete, we provide
mathematical formulation for the model together
with a model illustration in Figure 1. For more
details please refer to the original BBN paper.

One sample input to the model is a concate-
nated list of words composed of both target con-
text words (n-1 history words for n-gram) Ti and
source context words Si. Source words are se-
lected by looking at which source word target
word ti is aligned with, say it’s sai , then we take a
context window of source words surrounding this
aligned source word. When the window width is
m−1
2 , we have m source words in the input.

p(ti | Ti, Si)

Ti = ti−1, ..., ti−n+1

Si = sai−m−1
2

, ..., sai , ..., sai+m−1
2

Here we regard ti as output, i.e. y ∈ R as one
of the target words, and concatenation of Ti and
Si as input, i.e. x ∈ Rn+m−1 of n − 1 tar-
get words and m source words. The mathemat-
ical relation between input and output is as fol-
lows, where Θ = {L,W, b(1), U, b(2)}. Linear
embedding layer L ∈ Rd×(Vsrc+Vtgt) which con-
verts words to word vectors by lookup, where d
is word vector dimension. In hidden layer, W ∈
Rh×(d∗(n+m−1)), b(1) ∈ Rh. In softmax layer,
U ∈ RVtgt×h, b(2) ∈ RVtgt and

gi(v) =
exp(vi)∑Vtgt

k=1 exp(vk)

p(y = i | x; Θ) = gi(Uf(WL(x) + b(1)) + b(2))

Optimization objective is to maximize the log-
likelihood of the model.

`(Θ) =
m∑
i=1

log(p(y(i) | x(i); Θ))

2.2 Evaluation Metric
We use perplexity as the metric to evaluate quality
of a language model.

PP (W ) = p(w1, w2, ..., wN )
−1
N

3 Neural Network Joint Model with
Global Source Context

An n-gram language model is based on Markov
assumption and sacrifices long-term dependen-
cies. The NNJM studied in the previous section
suffers from a similar problem: When utilizing
the source sentence information, the model only
incorporates source words in a small window
range around the aligned source word, thus the
long-term dependencies in the source language is
missing. In this section, we show our attempts in
pushing the state-of-the-art of NNJM by utilizing
global source context (global source sentence
information). For simplicity, we will use NNJM-
Global to refer to this extension in the following
sections.

Intuitively, the optimal approach for incorpo-
rating the long-term dependencies in the source
sentence is to exploiting the dependency infor-
mation, by utilizing the results of dependency



he

P(school | he, walks, to, ��, �, ��, <\s>, <\s>)

hidden layer

softmax layer

walks to �� � �� <\s> <\s>

word vectors

input

output

walks to school <\s> <\s>

Figure 1: Neural network joint model with an example (illustrated with Chinese-English) where we use
4-gram target words (3 words history) and source context window size of 2. We want to predict the next
word following he, walks, to and hopefully estimated probability of the next word being school would
be high.

parsing of the source sentence. However, this
direct approach requires a parsing phase which
is both language-dependent and time-consuming.
As a result, it is difficult to scale to corpus that is
large in size and consists of various languages.
Thus, instead we attempt to explore methods that
are both language-independent and time-efficient
in this project.

3.1 Weighted Sum Source Sentence

Our first attempt is to include sentence vector
directly into the input layer of the neural network.
However, since the source sentence vectors are
various in length, we need a way to adapt the
global input vector into having uniform length.
Thus, we calculate the weighted sum of word
vectors in the source sentence, and feed the result
into our input layer, as shown in Figure 2.

There are various ways to determine the weights
used for different source words. Specifically, we
experimented with two different approaches:

1. Uniform weights We assign each word a uni-
form weight in the source sentence. In an-
other word, we take the mean of all the word
vectors to form the global context vector.

2. Zero weights for stop words Instead of giv-
ing all words the same weight, we identify
top N frequent words in the vocabulary as
stop words, and assign each of them with a

zero weight. For all the rest words in the vo-
cabulary, we still assign them with a uniform
weight. The intuition is that stop words are
over-frequent in the corpus, and instead of
providing useful information, they may bring
a lot of noise to the global context vector
when we compress them together with other
less frequent words.

3.2 Splitting Source Sentence Into Sections
The previous approach of taking the weighted
sum of the whole sentence vector suffers from a
problem: Compressing a whole sentence vector
into a single word vector length may cause a
non-trivial information loss. In order to solve
this problem and in the mean time does not
slow down the model training significantly, we
experimented with an approach where we split
the source sentence into sections before taking the
weighted sum and feeding the results into the next
layer, as shown in Figure 3. We treat the number
of sections as a hyper-parameter for this model.

Specifically, we experimented with two variants
of this approach:

1. Fixed section length splitting The sentence
vector is first extended with end-of-sentence
tokens so that all the input source sentences
are of the same length. Then the splitting is
done on the populated source sentences. For
instance, if we extend all the sentence to a



he

P(school | he, walks, to, �	, �, �
, <\s>, <\s>, [<s>�…�
<\s>])

hidden layer

softmax layer

walks to �	 � �
 <\s> <\s>

word vectors

input

output

walks to school <\s> <\s>

�	 � �
 <\s>�� ���<s>
walks to school <\s>he every morning<s>

weighted sum

Figure 2: An example for the NNJM with global context, where an additional source sentence is fed into
the model, while the source window and the target n-gram remains the same for the input. The linear
layer first takes all the word embedding vectors (blue) in the source sentence, and calculate a weighted
sum of the these vectors to form the global context vector (green). It is then concatenated with the
original input layer and fed into hidden layer.

length of 100 and we split the sentence and
get 10 global context vectors, each section
will have a fixed length of 10. This approach
is computationally more efficient since it can
be easily vectorized.

2. Adaptive section length splitting We use the
original source sentence instead of extend-
ing all sentence vectors into a uniform length.
Thus, each section will have a variable length
dependent on the length of the entire sen-
tence. This approach is difficult to vector-
ized for efficient GPU computation, but we
expect it to give us a performance boost over
the fixed section length approach.

hidden layer

word vectors

source sentence �	 � �
 <\s>�� ���<s>
walks to school <\s>he every morning<s>

splitting

…

Figure 3: An example of splitting source sentence
into 2 sections before calculating the global con-
text vectors. Weighted sum is calculated on the
first half of the sentence to form the first global
context vector, and then on the second half.

3.3 Global-only Non-linear Layer

Different dimensions of the global context vector
and different sections in the source sentences
are independent before the global context vector
is fed into the neural network in the previous
approaches. We add non-linearity to the model by
adding another global-only non-linear layer be-
tween the global linear layer and the downstream
hidden layer, as it is illustrated in Figure 4.

Note that this non-linear layer is only added
for the global part of the model, and has no effect
on the local part. We use the same non-linear
function for this layer as in other layers of the
model.

3.4 Bootstrapping NNJM-Global with
Pre-trained NNJM Parameters

The previous methods train the word embedding
vectors and all other parameters in the neural
network together. An natural extension to this is to
first train the NNJM, and then use the pre-trained
model parameters to bootstrap the NNJM-Global
model on the same dataset. Since NNJM and
NNJM-Global only differs in the global sentence
vector part and share architecture for the rest
of the neural network, this pre-training process
might be helpful.



hidden layer

word vectors

source sentence �	 � �
 <\s>�� ���<s>
walks to school <\s>he every morning<s>

splitting

…

non-linear layer

Figure 4: An example for the non-linearity on the
global source sentence. A weighted sum is calcu-
lated to form the intermediate global context vec-
tors (yellow), and then these intermediate vectors
are fed into a global-only non-linear layer.

4 Model Training

Following a similar strategy with BBN paper in
training the neural network, we use mini-batch
gradient descent to maximize the log-likelihood
on training set. Each batch contains 128 input
samples, each of which is a sequence of target
words plus source context words. There are
around 22K mini-batches per epoch. Model
parameters are randomly initialized in the range
of [-0.05, 0.05].

For hyper parameter tuning in NNJM model,
training runs for 5 epochs if not noted otherwise.
To evaluate the NNJM-Global model and compare
its different variants, instead of using a maximum
epoch number to limit the training time, we use
convergence check with the goal to exploit the
power of each model. Specifically, we check for
convergence after each epoch, and if in 5 consecu-
tive epochs the model achieves the same validation
set perplexity, we identify the learning process
as converged and stop the learning process. We
then use the same parameters at the best vali-
dation perplexity to evaluate the test set perplexity.

Instead of adding regularization terms, we use
the early stopping technique to pick the model
with least validation set perplexity. At the end of
every epoch we do a validation set test and see if
the validation set perplexity becomes worse from
last time, if it is worse we halve the learning rate.

The data set we use is from European Parallel
Corpus. Our training set contains 100,000 pairs

of parallel French-English sentences. Valida-
tion and test set each contains 1000 pairs of
French-English sentences. For analyzing the
NNJM model, we use all the 100,000 pairs of
sentences. However, since the implementation
of NNJM-Global model contains code that is
hard to vectorize, and we need to run for more
epochs to exploit the power of each model on
the training data, the training of NNJM-Global
models takes relatively longer time to finish. Due
to time limit, we use a subset (1/4) of the full
corpus, which contains 25,000 sentence pairs of
parallel French-English sentences, to evaluate
each variant of NNJM-Global, and compare the
result with NNJM trained under the same settings.

Both training and testing are implemented us-
ing Python. We use Theano Library for neural
network modeling. The training process is run on
a single GPU on Stanford rye machine. Training
speed is around 1,500 samples/second and train-
ing on one epoch of data (128*22K) takes around
half an hour. For reference, total training time for
a basic NNJM model over the entire corpus is thus
around 2.5 hours when the full GPU power is uti-
lized.

5 Experimental Results

5.1 NNJM

In this subsection, we focus on showing our un-
derstanding of the joint language model. Evalua-
tion results will be combined with NNJM+Global
model in Subsection 5.2.

5.1.1 Effects of Hyperarameters
In this part, we study how model hyper parameters
affect system performance and show insight on
our understanding of why they affect performance
in specific ways. Among all hyper parameters,
word vector dimension, source window size,
target n-gram size are specific to our language
model while network architecture (hidden layer
size and number of hidden layers) and learning
rate, number of epochs are general for neural
network training. By examining effects of those
hyper parameters we expect to get a better un-
derstanding of both NNJM and neural network
training.

Tuning of hyper parameters is done on the
full 100K training set as described above unless



noted otherwise. Since a full grid search is too
time consuming we will start from a default
hyper parameter setting and change one of them
each time. In default setting, learning rate is 0.3,
target n-gram size is 5 (4 history words), source
window width is 5 (thus 2 ∗ 5 + 1 = 11 source
words), vocab size is 20K for both target and
source language, epoch number is 5 (though the
model may not fully converge in just 5 epochs,
it’s enough to show the general trends of hyper
parameter’s influence), word vector size is 96 and
there is one hidden layer of 128 units.

Word Vector Dimension
Generally, it helps to increase word vector dimen-
sions. As shown in Figure 5, as we have larger
word vector sizes, validation perplexity decreases
monotonically. The disadvantage of large word
vector size is more training time and more eval-
uation cost.

20 40 60 80 100 120 140 160 180 200
6.9

7

7.1

7.2

7.3

7.4

7.5

7.6

7.7

Word Vector Dimension

Va
lid

at
io

n 
Se

t P
er

pl
ex

ity

Figure 5: Effect of Word Vector Dimension

Source Window Width
While having no source window degrades the
NNJM to NNLM, having a very small source
window (say include only one source word) can
greatly boost performance. From Figure 6 we can
see for our data set and model, source window
width 3 (3 ∗ 2 + 1 = 7 source words) achieves
the best validation set perplexity in 5 epochs. Pos-
sible explanation is that source words distant from
the aligned one add less information to predicting
target word and it also takes more epochs to con-
verge.

Target N-gram Size
As we can see in Figure 7, the general trend is
that as we increase target n-gram size perplexity
drops, yet after some turning point perplexity stays
roughly stable. Since larger n-gram size increases
model complexity, we’d conclude that n-gram size

0 1 2 3 4 5 6 7 8 9
6.8

7

7.2

7.4

7.6

7.8

8

Source Window Width

Va
lid

at
io

n 
Se

t P
er

pl
ex

ity

Figure 6: Effect of Source Window Width

of 4 is good for our case.

2 3 4 5 6 7 8
6.95

7

7.05

7.1

7.15

7.2

7.25

7.3

7.35

7.4

7.45

Target N−gram size

Va
lid

at
io

n 
Se

t P
er

pl
ex

ity

Figure 7: Effect of Target N-gram Size

Hidden Layer Size
The effect of hidden layer size is similar to word
vector dimension, as seen in Figure 8, as we have
larger hidden layers the perplexity drops monoton-
ically. Although extremely large hidden layer may
overfit the training set, we do not observe such sit-
uation for hidden layer sizes we have tried. There-
fore, we can choose hidden layer size of 256 for
higher performance.

0 50 100 150 200 250 300
5

10

15

20

25

30

Hidden Layer Size

Va
lid

at
io

n 
Se

t P
er

pl
ex

ity

Figure 8: Effect of Hidden Layer Size

Number of Epochs
An epoch of training means going through the en-
tire training set once in mini-batch gradient de-
scent training. Strictly speaking, it does not be-
long to hyper parameters since, in theory, we can



always train the model until convergence. How-
ever for real-world case, it might take too long to
reach convergence and we may want to get a sense
of how fast the model converges and how number
of epochs affect model quality so that we can make
informed decision to stop training earlier than con-
vergence. In Figure 9, we can see that our default
model converges in around 25 epochs. Since 5
to 10 epochs, the decrease of perplexity becomes
quite slow, thus it’s applicable to train for 5 to 10
epochs to get a decent result.

0 5 10 15 20 25 30
4

6

8

10

12

14

16

18

20

22

Number of Epochs

Va
lid

at
io

n 
Se

t P
er

pl
ex

ity

Figure 9: Effect of Number of Epochs

Learning Rate
While very large learning rate such as 1.0 and 3.0
leads to quick convergence yet unsatisfactory local
minimums (the loss stabilized at around 2 while
for lr=0.3, though not shown in the figure, can
reach around 1.5), very small learning rate such
as 0.03 converges too slow. Therefore, we think
learning rate around 0.3 with balance of conver-
gence speed and training quality. Note that in our
training method, we will halve the learning rate at
the end of a epoch if necessary. Here the valida-
tion set loss is negative log likelihood, which is
what we want to minimize. Due to time limit, ex-
periment for this part is using a 25K training set.

Multiple Hidden Layers
We have tried to extend the single hidden layer
NNJM to multiple hidden layers. Using two hid-
den layers with 128 units in each of them achieves
a boost in performance yet longer training time
(we train until convergence for this case). Using
three hidden layer with 128 units each takes too
long to converge and tends to overfit the training
set - we observe training set loss is much less than
validation set and while training loss keeps de-
creasing, validation set perplexity stays the same.

Activation Function

0 5 10 15 20 25 30 35 40 45 50
2

3

4

5

6

7

8

Thousand Iterations

Va
lid

at
in

 S
et

 L
os

s

 

 
lr=3.0
lr=1.0
lr=0.3
lr=0.1
lr=0.03

Figure 10: Effect of Learning Rate

l 1 2
Perplexity 8.05 6.98

Table 1: Effect of Hidden Layer Number

Table 2 shows that rectifier activation function
achieves better performance. Leaky rectifier’s per-
formance is similar to rectify.

rect(x) = x1[x > 0]

leaky-rect(x) = x1[x > 0] + 0.01x1[x < 0]

tanh rectify leaky rectify
Perplexity 8.05 7.35 7.35

Table 2: Effect of Activation Function

5.1.2 Visualizations and Insights
In this subsection we use network parameter
visualization to show how the neural network take
advantage of source context. Specifically, we will
look at the linear transformation matrix W in the
hidden layer, which can be thought as a way to
measure how much certain part of input contribute
to predicting the next word.

In Figure 11 we see that regions corresponding
to certain word positions have stronger intensity.
By averaging the absolute values of the weights in
each region of dimension of word vector size by
hidden layer units number, we get results in Fig-
ure 12. It’s clear that the source word in the middle
(word index number 6), i.e. the one aligned with
the next target word, contributes most to predict-
ing the next word. There is a quick trend of atten-
uating importance for source words far from the
middle one. We can also observe that the second



 

 

200 400 600 800 1000 1200

20

40

60

80

100

120

0.5

1

1.5

2

2.5

Figure 11: Heat map of absolute element values of
hidden layer matrix W . Input dimension is of 92∗
14 = 1344 where 96 is word vector dimension and
for n-gram size of 4 and source context window
width 5, there are 14 words in involved in each
input sample. Output put dimension is 128.

0 2 4 6 8 10 12 14
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Word Index

Av
er

ag
e 

H
id

de
n 

La
ye

r W
ei

gh
t TargetSource

Figure 12: Average of absolute values of hidden
layer matrix W elements corresponding to each of
the 14 words. Left 11 words (2 ∗ 5 + 1) are from
source window whose center is the source word
aligned with the next target word. Right 3 words
are the history words for target n-gram.

last target word (word index 14) in the n-gram (the
next target word/to-be-predicted one is the last)
contribute a lot for the prediction though with a
less weight than the middle souce word.

5.2 NNJM-Global

In this subsection we demonstrate experimental
results for each variant of the NNJM-Global
model, and compare their results with the vanilla
NNJM model. Note that all the models in this part
are trained with the same strategy described in
previous section. By default, we use a vocabulary
size of 10000, a source window size of 3, a target
n-gram size of 4, an embedding dimension of 96,
a hidden layer size of 128, and a learning rate of
0.3 to train the models.

5.2.1 Comparing NNJM-Global with NNJM
The resulting perplexity achieved by different
models on the test set is shown in Table 3. Note
that we also include the result for a basic neural

network language model (NNLM) where only
target words are utilized for making predictions,
to demonstrate the effect of global source context
information.

Model SrcWin Perplexity

NNLM - 95.06
NNLM-Global - 94.73

NNJM 7 10.09
NNJM-Global 7 10.05

NNJM 5 9.89
NNJM-Global 5 9.71

NNJM 3 9.51
NNJM-Global 3 9.45

NNJM-Global + SW-10 3 9.44
NNJM-Global + SW-25 3 9.44

Table 3: Test set perplexity for different models.
SrcWin represents the source window size that is
used in the model. SW-N represents that N most
frequent stop words are removed from the global
sentence vector. Results for the NNLM model
where only target words are used for prediction are
also included.

It is easily observed that for each setting of
source window size, the NNJM-Global model
achieves smaller (better) test set complexity
compared to its corresponding NNJM model.
For the settings shown in the table, the best
performance is achieved when the source window
size is set ot be 3. Under this setting, a marginally
better result is achieved when we use a zero-
weights-for-stop-words weighted sum strategy.
There is no noticeable difference between the
different settings of number of stop words in the
NNJM-Global model.

5.2.2 Effect of Splitting Source Sentence
Both the two approaches for splitting the global
source sentence vectors are evaluated and com-
pared to the basic NNJM and NNJM-Global
models. The results are shown in Table 4.

The fixed section length splitting strategy
with section number of 2 gives reduction of the
test set perplexity when compared to the basic
NNJM-Global model, while the adaptive section



Model NumSec Perplexity

NNJM - 9.51
NNJM-Global 1 9.45

NNJM-Global + FixSplit 4 9.54
NNJM-Global + FixSplit 2 9.38
NNJM-Global + AdaSplit 2 9.46

Table 4: Test set perplexity for models with differ-
ent global context vector section numbers. Num-
Sec represents the section number in the resulting
global context vector. We use FixSplit to denote
the model where the fixed section length splitting
method is used; we use AdaSplit to denote the
model where the adaptive section length splitting
method is used. All models included in this table
use a source window size of 3.

length splitting strategy gives almost the same
result as the basic NNJM-Global model, and also
achieves better result compared to the original
NNJM model. The performance is observed to
deteriorate when the section number increases.

5.2.3 Effect of Global-only Non-linear Layer
Generally, adding a non-linear layer could add
expression power to the neural network. We
evaluate different architectures for adding the
global-only non-linear layer in the NNJM-Global
model and demonstrate the result in Table 5.
Specifically, we compare adding the non-linear
layer to the basic NNJM-Global model, and to
the NNJM-Global model with the two splitting
strategies. We also evaluate the effect of different
non-linear layer sizes. For better interpreting the
architecture, we use non-liear layer sizes that are
integral multiple of the word embedding size.

One observation is that the effect of global-only
non-linear layer depends on the size of it and
the architecture of the rest part of the model.
In most cases adding the non-linear layer size
would boost the performance, but the scale of this
performance boost depends on the architecture
of the model. The best test set perplexity is
observed when a non-linear layer with the size
of double the word embedding vector is added to
the model where the global source context vector
is splitted into two sections. This best perplexity
is 1.9% lower than the basic NNJM model. One
possible explanation for this is that while the fixed

section size splitting approach allows more global
context information, the non-linear layer adds a
non-linear combination of this global information,
and without compromising the dimension used to
express this information. The model gains addi-
tional expressive power from this combination of
architecture settings.

6 Related Work

In ACL 2014, BBN published a paper on neural
network join model for statistical machine trans-
lation (Devlin et al., 2014), which is based on
neural network language model (Bengio et al.,
2003), and uses source language information to
augment target language model. In this project,
instead of focusing on efficiency and MT result
presentation, we investigate deep into the original
NNJM by study on hyper parameters and visual-
ization of hidden layer weights. We also extend
the model with global source context and achieves
improvement in terms of perplexity scores.

In another work published in ACL 2012, sen-
tence vector generated by weighted average of
source words is used for learning word em-
beddings with multiple representations per word
(Huang et al., 2012). Our project have taken simi-
lar strategy in generating sentence vector but have
also developed more complex models. Besides,
while their work forcus on representation learn-
ing, we forcus on designing good architecture to
improve joint language model quality.

7 Discussion and Future Work

Reflecting on the limited power of source sentence
vector on improving language model quality, we
have the following insights. Firstly, we think
sentence vector quality is restricted by the model
generating it. While a simple average of sentence
words’ embeddings capture little about global
context, architecture with non-linear layers can be
more powerful. Secondly, since a single sentence
vector is a highly compressed version of the
original sentence of dozens of words, it may be
more helpful on tasks relying on global context
such as sentiment analysis and text classification
and do less benefit to local tasks such as word
prediction.

We have several ideas on future directions to



Model NumSec NonLinearSize Perplexity

NNJM - - 9.51
NNJM-Global 1 - 9.45
NNJM-Global + NL 1 96 (1×) 9.45
NNJM-Global + NL 1 192 (2×) 9.45

NNJM-Global + FixSplit 2 - 9.38
NNJM-Global + FixSplit + NL 2 96 (1×) 9.61
NNJM-Global + FixSplit + NL 2 192 (2×) 9.33

NNJM-Global + AdaSplit 2 - 9.46
NNJM-Global + AdaSplit + NL 2 96 (1×) 9.55
NNJM-Global + AdaSplit + NL 2 192 (2×) 9.47

Table 5: Test set perlexity for models with global-only non-linear layers. Results for models with no
global vector splitting, with fixed section length splitting, and with adaptable section length splitting are
shown. NL represents the model with the non-linear layer in the global part. NonLinearSize represents
the size of the global-only non-linear layer. For example, a NonLinearSize of 192 (2×) shows that the
global-only non-linear layer has a size of 96, which is 2 times of the word embedding vector size.

explore based on the discussion above. On one
hand, we can push harder on sentence vector
generation model by adding more free parameters
and possibly use RNN model. On the other hand,
while sentence vector has little idea on how to
adapt itself to optimally predict local information
like next target word, we can design network
architecture to enable our model to learn this
ability of adaption. For example, if we add target
n-gram position as another input to the network, it
may enable the model to automatically learn word
alignment and source window length to optimize
local prediction. In such way, we can also get rid
of word alignment preprocessing on the parallel
texts.

Due to the limit of time, we are not able to
tune hyperparameters especially the multilayer
network architecture in enough resolution. Also
we test our language model on moderate size of
data. In the future, we can evaluate our model
on larger data set and have more thourough
hyperparameter tuning for each model.

As a part of our work, we also evaluate the
effect of bootstrapping the NNJM-Global model
by using word embeddings learned from training
NNJM on the same dataset, and by using word
embeddings from Google Word2Vec (Mikolov et
al., 2013). Word embeddings in the model will
then be fixed while we train the other parameters.
As it is shown in Table 6, this extension does

Model #Sec Perplexity

NNJM-Global 1 9.45
NNJM-Global+BS 1 9.53
NNJM-Global+FixSplit+BS 2 9.53
NNJM-Global+BS-W2V 1 9.45

Table 6: Test set perplexity for bootstrapping
models. BS represents the bootstrapped model
and all models are bootstrapped with the original
NNJM-Global model. One exception is BS-W2V:
this model is bootstrapped with Google Word2Vec
word embeddings for English only.

not work as well as we expected: bootstrapping
with the pre-trained NNJM word embeddings
degrades the NNJM-Global model performance,
and bootstrapping with the Word2Vec word em-
beddings only gives similar results. By observing
the learning process we find that, when starting
with a pre-trained word vectors, the model can
converge much faster than before (typically in less
than 10 epochs). This fast convergence often leads
the model into a local minimum, and the learned
parameters will stay unchanged afterwards. Thus,
the model performance will then be influenced
by the choice of this starting point. Exploring
more sophisticated ways to bootstrap this joint
language model will be a possible future direction.



8 Conclusion

In this report we present our work in investigating
a neural network joint language model and extend-
ing it with global source context. Our experimen-
tal analysis demonstrates that network architec-
ture and multiple hyperparameters will influence
the performance of this model in specific ways.
We also show that visualization of the learned
model parameters matches surprisingly well with
our intuitions. Furthermore, evaluation shows that
incorporating the weighted sum of the splitted
source sentence and adding a non-linear layer into
a local architecture can further improve the per-
formance of the language model measured by per-
plexity. Finally, we open-sourced our implemen-
tation of both the original model and the extended
model.

Acknowledgements

We sincerely acknowledge Thang Luong in the
Stanford NLP Group for his advising on this
project. We also thank CS224N TAs and Prof.
Chris Manning for bringing us such a fruitful and
rewarding class.

References
[Bengio et al.2003] Yoshua Bengio, Réjean Ducharme,

Pascal Vincent, and Christian Janvin. 2003. A neu-
ral probabilistic language model. J. Mach. Learn.
Res., 3:1137–1155, March.

[Devlin et al.2014] Jacob Devlin, Rabih Zbib,
Zhongqiang Huang, Thomas Lamar, Richard
Schwartz, and John Makhoul. 2014. Fast and
robust neural network joint models for statistical
machine translation. In 52nd Annual Meeting of
the Association for Computational Linguistics,
Baltimore, MD, USA, June.

[Huang et al.2012] Eric H Huang, Richard Socher,
Christopher D Manning, and Andrew Y Ng. 2012.
Improving word representations via global context
and multiple word prototypes. In Proceedings of the
50th Annual Meeting of the Association for Compu-
tational Linguistics: Long Papers-Volume 1, pages
873–882. Association for Computational Linguis-
tics.

[Mikolov et al.2013] Tomas Mikolov, Kai Chen, Greg
Corrado, and Jeffrey Dean. 2013. Efficient estima-
tion of word representations in vector space. arXiv
preprint arXiv:1301.3781.


	Introduction
	Neural Network Joint Model
	Model Description
	Evaluation Metric

	Neural Network Joint Model with Global Source Context
	Weighted Sum Source Sentence
	Splitting Source Sentence Into Sections
	Global-only Non-linear Layer
	Bootstrapping NNJM-Global with Pre-trained NNJM Parameters

	Model Training
	Experimental Results
	NNJM
	Effects of Hyperarameters
	Visualizations and Insights

	NNJM-Global
	Comparing NNJM-Global with NNJM
	Effect of Splitting Source Sentence
	Effect of Global-only Non-linear Layer


	Related Work
	Discussion and Future Work
	Conclusion

