The following table “ Wnt signaling in different developmental processes in the worm and the players involvedhas been assembled by David Eisenmann  (Latest update June 2002, send comments/corrections here). Thanks to David for this contribution.

 

Note that whereas some of these developmental processes, such as P2>EMS signaling are somewhat different from the more familiar Wnt signaling events, other Wnt signaling pathways in C. elegans, such as the postembryonic Q migration are “canonical” in the sense that they use the same components as vertebrate/Drosophila pathways.

 

Protein/gene

 

P2-> EMS

E fate

P2->EMS

spindle rot.

VPC fate

Q progeny migration.

P12  fate

T cell polarity

P7.p polarity

V cells

gonad migration

 

 

 

 

 

 

 

 

 

 

 

Porcupine

 

MOM-1

5, 6

MOM-1

20

MOM-1

3

 

 

 

 

 

 

Wnt

 

MOM-2

5, 6

 

 

EGL-20

9

LIN-44

1

LIN-44

24, 25

 

EGL-20

23

 

Frizzled

 

MOM-5

5, 6

MOM-5

20

 

LIN-17

MIG-1

9, 27

LIN-17

1

LIN-17

14, 15

LIN-17

14, 15

LIN-17

23

 

Disheveled

 

 

 

MIG-5

26

MIG-5

26

MIG-5

26

 

 

 

 

GSK3

 

 GSK-3

20

GSK-3

20

 

 

 

 

 

 

 

Axin**

 

 

 

PRY-1

3

PRY-1

8

PRY-1

3

 

 

PRY-1

8, 23

 

APC

 

APR-1

5

 

APR-1

11

 

 

 no?

31

 

 

 

b-catenin

 

WRM-1

5

 

BAR-1

4

BAR-1

8

BAR-1

2

no

28

 

BAR-1

23

WRM-1?

3

TCF

 

POP-1

7

 

 

POP-1

28, 29

 

 POP-1

28

 

 

POP-1

3

target gene

 

 

 

lin-39

4

mab-5

10

egl-5

1

 

 

mab-5

23

 

 

 

 

 

 

 

 

 

 

 

 

LIT-1 (NLK)

 

yes

12, 13, 16

 

no

3

 

 

yes

13

 

 

 

MOM-4 (TAK)

 

yes

6, 16, 17

 

 

 

 

no

31

 

 

 

MIG-14 (?)

(pka MOM-3)

 

yes

6

yes

20

yes

2

yes

9

yes

2

 no

30, 31

yes

21

 

yes

2, 19

                              |------  embryonic ----------||------------------------ postembryonic ------------------------------------------------------|

 

 

 

 

 

**           pry-1 encodes an Axin homolog

1               Jiang and Sternberg 1998. Development 125: 2337-2347

2               Eisenmann and Kim 2000. Genetics 156: 1097-1116

3               Gleason 2002

4               Eisenmann et al. 1998. Development 125: 3667-3680

5               Rocheleau et al. 1997.  Cell 90: 707-716

6               Thorpe et al 1997. Cell 90: 695-705

7               Lin et al. 1995. Cell 83: 599-609

8               Maloof et al. 1999.  Development 126: 37-49

9               Harris et al. 1996. Development 122: 3117-3131

10           Salser and Kenyon 1992.  Nature 377: 229-232

11           Hoier et al. 2000.  Genes and Development 14: 874-886.

12           Kaletta et al. 1997. Nature 390: 294-298

13           Rocheleau et al. 1999.  Cell 97: 717-726

14           Sternberg and Horvitz 1988.  Developmental Biol. 130: 67-73

15           Sawa et al. 1996.  Genes and Development 10: 2189-2197

16           Meneghini et al. 1999. Nature 399: 793-797

17           Shin et al. 1999.  Molecular Cell 4: 275-280

18           Herman et al. 1999. Development 126: 1055-1064

19           Nishiwaki 1999. Genetics 152: 985-997

20           Schlesinger et al. 1999.  Gene and Development 13: 2028-2038

21           A. Schkesinger and B. Bowerman personal communication

22           H. Korswagen, personal communication

23           Hunter et al. 1999. Development 126: 805-814

24           Herman and Horvitz 1994. Development 120: 1035-1047

25           Herman et al. 1995. Cell 83: 101-110

26           C. Guo PhD thesis 1995. Johns Hopkins University

27           S. Clark, personal communication

28           Herman 2001. Development 128: 581-590

29           Korswagen et al. 2000. Nature 406: 527-532

30           M. Herman, personal communication

31           H. Sawa, personal communication