
Evolving Strategies for Competitive
Multi-Agent Search

Erkin Bahçeci, Riitta Katila, and Risto Miikkulainen

Abstract—While evolutionary computation is well suited for
automatic discovery in engineering, it can also be used to gain
insight into how humans and organizations could perform more
effectively. Using a real-world problem of innovation search
in organizations as the motivating example, this article first
formalizes human creative problem solving as competitive multi-
agent search (CMAS). CMAS is different from existing single-
agent and team search problems in that the agents interact
through knowledge of other agents’ searches and through the
dynamic changes in the search landscape that result from these
searches. The main hypothesis is that evolutionary computation
can be used to discover effective strategies for CMAS; this
hypothesis is verified in a series of experiments on the NK model,
i.e. partially correlated and tunably rugged fitness landscapes.
Different specialized strategies are evolved for each different
competitive environment, and also general strategies that perform
well across environments. These strategies are more effective and
more complex than hand-designed strategies and a strategy based
on traditional tree search. Using a novel spherical visualization of
such landscapes, insight is gained about how successful strategies
work, e.g. by tracking positive changes in the landscape. The
article thus provides a possible framework for studying various
human creative activities as competitive multi-agent search in the
future.

Index Terms—Competitive multi-agent search, evolutionary
computation, NK model, NEAT, CPPN.

I. INTRODUCTION

Evolutionary computation (EC) is often used as a method
for optimizing engineering design, be it physical or abstract
constructions, or descriptions of complex processes such as
lisp code or neural networks. However, EC can also be used
to gain insight into how humans perform various tasks, and
how they could perform them better. This article focuses on
such a topic: It presents a model of human problem solving
in competitive domains, and demonstrates how evolutionary
computation can be used to discover effective behavior in such
domains.

More specifically, the study makes three contributions. First,
it develops competitive multi-agent search (CMAS) as a for-
malization of human problem solving. CMAS was originally
developed to understand how high-tech companies search for
technological innovations, but the same formalization can
potentially be applied to computational modeling of scientific

This research was supported in part by NSF under grants SBE-0914796,
IIS-0915038, and DBI-0939454.

Erkin Bahçeci and Risto Miikkulainen are with the Department of Computer
Science, University of Texas at Austin, Austin, TX, 78712, USA (e-mail:
erkin@cs.utexas.edu; risto@cs.utexas.edu).

Riitta Katila is with the Department of Management Science &
Engineering, Stanford University, Stanford, CA, 94305, USA (e-mail:
rkatila@stanford.edu).

discovery, engineering problem solving, and art and design.
In CMAS, multiple agents search for the same peaks (i.e.
innovations) on the common fitness landscape. They each
try to find as many and as high peaks as possible over a
given amount of time, representing the cumulative value of
their innovations. While searching, they can choose to share
information about what they find, or keep such information
private. Furthermore, the landscape is dynamic in that the
fitness of the points can increase or decrease when multiple
agents discover them, representing the dynamic valuation of
innovations in the real world. The CMAS formalization is
useful because it makes it possible to characterize how humans
solve innovation and design problems, resulting in precise the-
ories in management science, psychology, and social science.
However, the formalization also makes it possible to use such
models to determine how humans could perform better than
they currently do, thus informing both the individuals who
are trying to solve these problems, and the administrators that
design policies to encourage innovation and creativity.

The second contribution, and the main one of this article,
focuses on this opportunity to do better. The article demon-
strates that evolutionary computation is a particularly good
way to solve CMAS problems. As an experimental platform,
an abstract, general CMAS domain is defined in terms of an
NK fitness landscape [1]. A comprehensive array of basic
search strategies is created for this domain, based on local
(exploitative) search and long-range (exploratory) search using
public and/or private information about the landscape. An
advanced search strategy is also implemented based on tree
search, representing a typical AI problem solving method
[2]. These strategies are then used to instantiate several
different competitive environments, by including competitors
with different strategies. New strategies are evolved for each
environment in order to perform better than the existing ones.
The results show that (1) evolution can discover customized
strategies that perform well in each environment, (2) it can
discover general strategies that perform well across many
different environments, and (3) the good evolved strategies
are more complex than the basic intuitive strategies, employ-
ing different strategies at different times, exhibiting optimal
preference for acting publicly or privately depending on the
particular environment, and resulting in overall principles such
as riding a wave of dynamically increasing landscape.

The third contribution is a technical one: a novel spherical
visualization for NK fitness landscapes. This visualization
maintains the continuity of the original high-dimensional land-
scape while reducing it to an intuitive 3D surface. A focal
point is selected, and continuity is maintained by representing

ar
X

iv
:2

30
6.

10
64

0v
2

 [
cs

.N
E

]
 1

 J
ul

 2
02

3

2

points further away with lesser resolution. This visualization
is useful in illustrating the search strategies: For instance, it
makes it strikingly clear why the wave-riding behavior is so
effective. However, the visualization is general, and could be
useful for any study involving high-dimensional binary spaces.

The article thus shows that CMAS is a potentially useful
way to study problem solving in the real world, and that
evolutionary computation is an effective way to gain insight
into such problems.

II. BACKGROUND

This study is motivated by the real-world problem of
innovation search in organizations. The formalization of this
problem, CMAS, builds on single-agent and team-search
methods, but extends them with competitive and cooperative
dynamic interactions between agents. It also builds on agent-
based modeling, but applies that general approach to doing
innovation search in a landscape that changes dynamically
because of agent actions. The main contribution is to show
that evolutionary computation is a good way to discover
effective solution strategies for CMAS. While many different
evolutionary approaches could be used, the particular one
tested in this article is based on NEAT neuro-evolution [3]
as one representative approach. With NEAT, strategies can be
represented naturally with neural networks whose complexity
is matched with the task.

A. Organizational Theory

Even though the main focus of this article is on evolutionary
optimization of CMAS strategies, it is useful to review the
motivation from the perspective of a real-world example of
CMAS, that of organizational theory in management science.
The example serves to make the issues and the motivation
concrete.

Search (i.e. institutional problem solving) in the organi-
zational theory literature is typically thought to take place
in a knowledge space, conceptualized as a landscape. In
innovation search, for example, firms generate, recombine,
and manipulate knowledge within a pool of technological
possibilities [4], and such activity can be tracked, for example,
by using patents (e.g. [5]). Such a search can be represented
in an NK landscape where N corresponds to dimensions of
knowledge and K determines how complex the relationships
between them are [6], [7], [8]. This work has led to several
insights. One is that firms that search more frequently and
further away from their current knowledge bases (i.e. explore)
are more likely to succeed [9], [5]. Another is that firms
typically search in exactly the opposite way: too little and
too close (i.e. exploit), and therefore need to find effective
strategies to resist such local tendencies [10].

Despite these insights, the focus of organizational search
research has been relatively narrow. Prior efforts typically
assessed a firm’s innovation activities only relative to its
own behavior, i.e. as single-agent search. Only recently,
researchers have started to conceptualize search beyond its
single-agent roots and to incorporate competition. There is
emerging research on situations in which firms learn from

their competitors and on why such learning is sometimes
difficult [11], [12], as well as research on how competitors
interact dynamically [13]. However, to date these studies have
been conceptual and statistical only; competition has not been
integrated in any formal models of organizational search.

The first contribution of this article is to do so, i.e. to
create a formalization that can be used to study such compet-
itive processes with computational techniques. It contributes
thus to management science, but it also contributes to AI,
by defining a new and interesting class of search problems
relevant to the real world. Although the motivation comes
from the specific example of organizational search, the same
formalization should be useful in understanding a range of
problem solving activities in human societies, such as scientific
discovery, innovation in engineering, and art and design.

The second, main contribution of this article is then to
show that new computational techniques are useful in this new
domain. The next subsection reviews traditional search tech-
niques in artificial intelligence and evolutionary computation,
pointing out why they are not a good fit with CMAS problems.

B. Search Algorithms

Traditionally, research on search algorithms has focused on
two types of search methods: search performed by a single
agent and search performed by a team of similar cooperating
agents. Single-agent search methods, such as A* [14] and
iterative-deepening A* (IDA*) [15], have been used in well-
defined search domains, including path finding and scheduling
problems. Such methods are understood well theoretically
and guarantee optimal solutions to a problem, but they are
impractical to utilize if the search space of the problem is too
large.

On the other hand, with team-search methods the individual
team members search for peaks in a fitness landscape in
parallel; every point in the search space has a certain height
corresponding to its fitness value, and the knowledge of all
agents is collected into a single pool. These search methods
are appropriate in problems that are inherently large or not
well-defined, such as antenna design [16] and robot control
[17]. The theory of these methods is less well developed and
they do not usually guarantee optimal solutions.

Team-search methods are typically inspired by various types
of biological and natural systems, such as evolution [18],
swarm behavior [19], water drops [20], and gravitational par-
ticle interactions [21]. For instance, Particle Swarm Optimiza-
tion [22] and Ant Colony Optimization [23] are inspired by
social swarm behaviors in nature: They make use of multiple
agents that represent solutions to optimization problems.

Competition has been incorporated into single-agent search
methods by extending them to two-player games [24] and
multi-agent adversarial games [25]. The search for the best
move for a player proceeds by first considering all moves of
that player and then a subset of the moves of the opponents
(utilizing techniques such as alpha-beta pruning [26], [27]).
However, since such search methods rely on enumerating all
possible moves of at least one player, they are not practical
with a large number of moves.

3

Competitive elements exist in team search as well. For
instance, in evolutionary search, population members compete
to propagate their genes, although the population as a whole
cooperates to produce a single good solution. Inter-population
competition has been incorporated into evolutionary search in
a coevolutionary arrangement, where different populations try
to outdo each other in the task [28], [29], [30], [31]. However,
there is no absolute fitness; a team is considered successful
simply if it does better than the other team. Moreover, the
teams do not alter the fitness landscape and therefore do not
influence others’ search.

Therefore, neither single-agent nor team-based search is a
good fit with CMAS problems. In CMAS, interactions among
agents and between the agents and the environment need to be
taken into account explicitly. Agent-based modeling provides
a framework for doing that, as will be described next.

C. Agent-Based Modeling

Agent-based modeling has been used extensively in various
fields including search and optimization in computer science
[23], [22], [32], as well as real-world social and economical
interactions in political science [33] and economics [34], [35].
The idea is to model each agent explicitly, with the goal
that global patterns emerge from this process. The agent-
based approach is therefore an appropriate formulation for
competitive multi-agent search.

In the multi-agent systems literature, there are many exam-
ples of domains where the agents compete to solve problems
[36]. CMAS can be seen as a special case of such problems,
characterized by four special properties: (1) Competitive multi-
agent search is modeled as search for the same highest peaks
in a common landscape. (2) The agents may not necessarily
know about the other agents’ searches, and may or may not
inform them about their own searches. (3) Their search actions
have an effect on the landscape that is visible to all agents.
(4) The agents’ search strategies are stochastic, representing
the bounded rationality of real-world agents such as human
decision makers and organizations [37].

While some of these properties have been addressed in prior
research, together they define a new and interesting problem
class. It shares with prior work the idea of agents and their
interactions as the appropriate level of modeling. However,
building on these specific properties, it may be possible to
develop a specific formalization and approach for CMAS
problems that makes it easier to understand and solve such
problems. This is the goal of this article.

The main hypothesis tested is that while it is possible
to formulate search strategies by hand, and adapt traditional
single-agent search strategies to CMAS, better strategies can
be discovered automatically by evolutionary optimization.
In order to verify this hypothesis, a particular approach is
developed using evolution of neural networks with the NEAT
method [3]. While other methods are possible as well, repre-
senting CMAS strategies as pattern-producing neural networks
(such as CPPNs [38] or CPGs [39]) is a potentially powerful
approach, as will be described in detail in Section III-F. While
such networks could be evolved through different methods,

NEAT has been previously applied to them extensively, and
will therefore be used as the default implementation in this
article as well.

D. Neuro-Evolution of Augmenting Topologies (NEAT)
NEAT (Neuro-Evolution of Augmenting Topologies; [3]) is

a method for evolving neural networks that adjusts both the
topology and the weights as part of the learning process (for
other such methods, see [40], [41], [42]). It is based on three
synergetic ideas (see e.g. [3] for details):

First, the initial population of neural networks consists
of minimally connected individuals with no hidden nodes
(i.e. nodes other than input and output nodes). The networks
gradually become more complex through mutations that add
nodes and connections. Only those additions to the topology
that improve performance are kept, which helps find small
solutions to the problem. Starting with minimal topology also
speeds up learning since the number of connection weights to
be optimized during evolution, i.e. the size of the search space
for connection weights, is minimal [3].

Second, crossover between individuals with different
topologies is made possible by keeping an innovation number
for each gene in the genome of a neural network. Innovation
numbers are used to match genes that have similar historical
origin. They are an abstraction of homology in biological
evolution, which is the mechanism for aligning similar genes
during crossover [43]. Keeping these numbers for each gene
circumvents the expensive task of matching topologies of
networks for crossover (see [3] for details on innovation
numbers).

The third component of NEAT is that innovation in popu-
lation members is protected by separating the population into
species depending on similarity. When a structural mutation
alters an individual considerably, the individual may not ini-
tially perform as well as other population members. If this
happens, that individual will not survive even though this
mutation might have led to a better-performing individual after
some optimization. Speciation protects such individuals by
putting networks that are too different from others into separate
species, allowing them to be optimized within the species first.
To prevent the whole population from being reduced to a single
species, explicit fitness sharing [44] is used. This principle
means that the fitness within the species is shared among its
members, dividing the fitness of each individual by the size
of its species, preventing species from becoming too large.

NEAT has been shown to be successful in several open-
ended design domains, such as vehicle control and collision
warning [45] and controlling video game agents [46]. Most
importantly, it has been particularly effective in evolving Com-
positional Pattern Producing Networks (CPPNs), i.e. networks
that produce spatial patterns [38]. The approach developed in
this article will make use of this idea: Agent strategies will
be encoded as 4D and 2D patterns, as will be described in
Section III-F.

III. APPROACH

In CMAS, multiple agents search for the highest peaks in
the same landscape simultaneously. The agents either share or

4

hide their knowledge about the landscape from other agents,
and their searches change the landscape dynamically. They
select search actions (either exploit locally or explore globally)
based on a strategy that is encoded as CPPNs, and evolved
through the NEAT method. This section describes the land-
scapes, the agent models, the memory types and search actions
they use, how the strategies are represented and generated from
CPPNs, and how multiple agents are simulated.

A. Fitness Landscape

As the search space for the experiment, abstract NK fitness
landscapes [1] are used. NK landscapes are N -dimensional
hypercubes that assign fitness values to the points of the space
such that the ruggedness of the landscape can be adjusted
(using the K parameter). Such landscapes have been used ex-
tensively to model human problem solving, such as innovation
search [7], [47], [48]. Compared to alternatives such as game
theoretical models, the characteristics of the environment can
be readily incorporated into an NK simulation, a large number
of agents can be included, and they can be boundedly rational,
making it easier to draw relevant insights [7].

The K parameter specifies the level of interaction among
the N dimensions and can take the values between 0 and
N−1. When K is 0, the fitness landscape is single-peaked and
smooth. One can go from the lowest-fitness point to the single
peak by simply following the fitness gradient (i.e. separately
flipping each bit that causes the fitness to increase). With small
K, the fitness landscape becomes a little rugged, but highest
peaks are concentrated in a region. When K is N − 1, the
landscape becomes fully random with many peaks distributed
all over the space.

More specifically, each point in the search space is encoded
as a bit string of length N . The fitness of a point is calculated
by taking the average of the fitness contributions of each bit
in the bit string for that point. Each bit’s contribution depends
on the value of K+1 bits: that bit and the K bits that interact
with that bit. As suggested by Kauffman [1], for bit i the
interacting bits are the K bits that follow it, i.e., bits i + 1,
i + 2, ..., i + K (mod N). These K + 1 bit values are used
as a key to look up fitness-contribution values from a table,
generated randomly from a uniform distribution. This table
has N random values for each (K+1)-bit key, of which there
are 2K+1. Figure 1 shows how the fitness is calculated for an
NK fitness landscape with N = 3 and K = 2. In this case,
the table consists of 3× 8 fitness contribution values.

Dynamic fitness landscapes are modeled through flocking.
That is, whenever an agent visits a point, the fitness of that
point and those nearby change, depending on the flocking
intensity and flocking radius parameters. The fitness of the area
around a point defined by the flocking radius is multiplied by
the flocking intensity. Two types of flocking are used. With
boosting, flocking intensity is greater than 1.0 and the region
rises, whereas with crowding, flocking intensity is less than 1.0
and the region sinks. There is no limit on the number of times a
point can be visited. Therefore, when used in isolation, boost-
ing and crowding will cause a point’s fitness value to approach
1.0 and 0.0, respectively, with every visit to that point. These

Fig. 1: An NK fitness landscape, where N = 3 is the number
of dimensions or bits of each point and K = 2 is the number
of other dimensions that interact with each dimension. For
example, dimension 2 interacts with dimensions 1 and 3 (i.e.
the two bits that follow it). To obtain the fitness of a point,
e.g., 010, the fitness contribution values for its element values
are averaged (i.e. the third row in the table). The arrows on
the hypercube represent the direction of increasing fitness.
Also shown on the hypercube are the peaks in the NK
fitness landscape, indicated with shaded circles. The fitness
values of all points constitute the complete fitness landscape.
NK landscapes are useful because they are general and the
difficulty (i.e. ruggedness) can be adjusted. Such abstract
landscapes can be used as a platform to study search methods.

changes make it possible to model the dynamics of fitness
landscapes in applications such as innovation search, where
boosting corresponds to expanding demand in new markets
(such as tablet computers) and crowding to the saturation of
existing markets (such as desktops) [49]. The details of the
simulated agents are described next.

B. Agents

Each search agent is a software entity that looks for high-
fitness points in the given fitness landscape. The behavior of
an agent depends on the current state of the fitness landscape,
the agent’s strategy, and the current points in its memory.

Formally, the search agent’s knowledge X (t) of the land-
scape and its topography at time t consists of the points xi

with fitness values z(xi) (1 ≤ i ≤ t), where z is the fitness
function:

X (t) = {[x1, z(x1)], [x2, z(x2)], ...[xt, z(xt)]}. (1)

The agent moves to the next (i.e. (t + 1)th) point using
a search strategy S based on what the agent already knows
about the landscape (i.e. points visited by that agent and other
agents):

xt+1 = S[X (t)]. (2)

An agent’s strategy S consists of two components that
determine how the agent will use its current knowledge. The
first strategy component, S1, specifies which type of memory
(i.e. public or private, Section III-C) and which search method

5

Algorithm 1 Simulation algorithm

1: Initialize simulation and agents.
2: for each time step until the maximum number of steps is

reached do
3: for each agent ai do
4: Advance ai one time step (Algorithm 2).
5: Record any landscape visits and public memory up-

dates by ai.
6: end for
7: Apply recorded landscape visits by updating fitness

landscape.
8: Apply recorded public memory updates.
9: end for

(i.e. explore globally or exploit locally, Section III-D) the agent
will employ. The second strategy component, S2, specifies in
which type of memory the agent will place the last point it
found.

The simulation runs in discrete time steps, where every time
step each agent is allowed to move according to its strategy
and based on its current knowledge (Algorithm 2). At the
beginning of a time step, each agent probabilistically selects
a search method and a source memory for the search starting
point. This point is given as input to the search method chosen
by the agent to find a new high-fitness point. At the end of
each time step, if the agent has discovered a point that is better
than the previous one, it schedules that point to be placed into
the destination memory.

Even though the simulation advances the agents sequentially
(Algorithm 1), the collective outcome of each time step in the
simulation is independent of the agent execution order, due
to the delayed execution of the side effects of agent actions.
That is, every time step the simulator records landscape visits
performed and public memory updates scheduled by agents,
without actually making any changes immediately (line 5 in
the algorithm). The recorded agent visits are performed at the
end of each time step after all the agents complete their search
steps, and the resulting landscape changes are carried out
(line 7). Similarly, public memory updates scheduled during
a time step are applied at the end of that step (line 8). The
simulation is then carried out until the agents have searched
a significant part of the space (100 points in the experiments
in this article). The memory types will be described next.

C. Memory

Agents can place points in two types of memory: public
and private. In terms of the innovation search example, public
memory corresponds to public knowledge through patents,
and private memory to trade secrets. Public memory can be
accessed by all agents and it serves as a common knowledge
base among agents. That is, through the use of public memory,
agents can communicate the discovery of high-fitness points
to the other agents. This information in turn attracts the other
agents to those good points, potentially benefiting all agents.
However, use of public memory also makes it likely for all
agents to spend their time in the same region of the search

Algorithm 2 Agent’s algorithm to complete one time step

1: Pick a search method and source memory probabilistically
using S1 strategy.

2: Perform one search step starting with the best point in the
source memory.

3: if found a better point than the last one then
4: Pick a destination memory probabilistically using S2

strategy.
5: Schedule placement of the new point in the destination

memory.
6: end if

space, and through dynamic landscape changes, may lead to
decreasing fitness.

On the other hand, private memory is unique to each agent.
Each agent can place points in its own private memory, where
they are hidden from other agents. When agents make use of
their private memory, they are more likely to spread out and
explore different regions of the fitness landscape, leading to
increased coverage of the search space.

Because memory contents change at each time step, public
and private memory are denoted as Xpub(t) and Xpriv(t),
respectively. Before performing each search action, an agent
takes the best point currently in the memory (either public
or private, depending on the strategy), and performs a search
using this point as the starting location. The next section
describes the two search methods.

D. Search Methods

The agents employ two search methods probabilistically
depending on their S1 strategy: the exploit search method,
i.e. taking a local step, and the explore search method, i.e.
making a long jump in the search space. These two methods
are motivated by how agents, such as innovating firms, search
in the real world (Section II-A; [50]; note that thus these
terms in this article do not refer to deterministic and stochastic
actions like they do in the reinforcement learning literature,
but instead to the length of the search step as they do in the
management science literature).

The exploit search method starts with a given point in the
search space. It then tries to discover new high-fitness points
that are immediate neighbors of that point, i.e. are at 1-bit
distance from it. Each new point is generated by flipping one
bit in the point’s N -bit representation. If the new point has
a better fitness than the starting point, that point is placed in
memory. Otherwise, the search continues by flipping another
bit of the starting point, and so on until all bits are tried. The
order of the flipped bits is a random permutation of numbers
1 through N .

The explore search method also starts with a given point,
but it obtains new points in a different way. From the starting
point, it jumps to a new point that is not an immediate neigh-
bor. More specifically, it generates a new point by flipping
multiple random bits of the starting point simultaneously and
continues to do so until the new point has higher fitness than
the starting point, or the maximum number of jump attempts

6

State:
Action: Exploit with Exploit with Explore with Explore with

public mem. private mem. public mem. private mem.
Public: low fit. 0.1 0.2 0.3 0.4Private: low fit.
Public: low fit. 0.0 1.0 0 0Private: high fit.
Public: high fit. 0.005 0.995 0 0Private: low fit.
Public: high fit. 0 0 0.9 0.1Private: high fit.

TABLE I: An example S1 strategy component, where each
row represents a state, and each column represents an action.
S1 consists of 4 × 4 probability values, one per action-state
combination, which are used for selecting an action (i.e. a
search method and a starting point) given the state (i.e. the
binary-valued fitness of the best points in public and private
memory). Each row of probability values adds up to 1.0,
and determines what the agent will do in the corresponding
state. For instance, the second row of this particular strategy
specifies that when the best public point has low fitness and
best private point has high fitness, the agent will exploit that
public point with 0.1 probability, exploit that private point with
0.2 probability, explore starting with that public point with 0.3
probability, or explore starting with that private point with 0.4
probability.

is reached. The number of bits to be flipped is also chosen
randomly within a range given in simulation parameters. For
the experiments in this article this range is set to [0.5, 1.0],
which means that a new point in an exploration step is obtained
by flipping between 50-100% of bits of the starting point. In
this manner, the exploration action is a relatively long jump,
and therefore distinctly different from the exploitation action.

These search methods provide two actions for agents to
perform on the starting point. They are selected stochastically
based on the agent’s strategy, as described next.

E. Agent Strategy

Agents select among the two search methods using a search
strategy. To represent this strategy, the state of each agent is
converted to a discrete form based on whether the considered
points’ fitness values are less than 0.5 (i.e. low fitness) or more
than 0.5 (i.e. high fitness). The two components of an agent’s
strategy, S1 and S2, consist of a set of probability values for
each discrete state of the agent. Tables I and II show example
S1 and S2 strategies, respectively. Each row represents a dis-
crete state of an agent, and each column represents an action.
The agents choose their actions probabilistically depending
on their current state, according to the probabilities in these
tables.

The S1 strategy component is employed by agents to visit a
new point. Using S1, an agent selects both a search method and
a starting point, i.e. the memory’s best point from which the
search begins, depending on the discrete-valued fitness of the
best points of public and private memory. The state consists of
the discrete-valued fitness of the two memories and the action
is a combination of the search method and the starting point
chosen. Thus, there are four possible states (low or high fitness

Pub. ↓ Pub. ↓ Pub. ↑ Pub. ↑
Priv. ↓ Priv. ↑ Priv. ↓ Priv. ↑ Point ↓ Point ↑

Exploit pub.
Exploit priv.
Explore pub.
Explore priv.

Point → pub.

Point → priv.

Fig. 2: A pie-chart depiction of the example agent strategy
shown in Tables I and II. Each of the circles corresponds to
a row of one of those two tables (i.e. a state): four circles
on the left for S1 and two on the right for S2, where ↓ and
↑ represent low and high fitness, respectively. Each shading
pattern corresponds to a column of one of the two tables (i.e.
an action). The size of each slice represents the probability of
the action in the corresponding table row and column. This
chart format allows visualization of the 20 probability values
of a strategy in a compact way. Additionally, the black band
around each circle indicates the average percentage of time
the agent spent in the state that corresponds to the circle (i.e.
a row in Tables I and II). The example percentages shown
from left to right are 5%, 10%, 25%, and 60% for S1, and
20% and 80% for S2. The total area of gray slices overall
indicates how much private memory is used, whereas the
amount of dotted shading in the first four circles tells the
ratio of exploration. For instance, the first circle shows a
row with non-zero probabilities for all actions, whereas the
second circle specifies that only one action is possible in
the corresponding state (i.e. with 1.0 probability). In certain
cases, the probabilities for all but one action are close but not
equal to 1.0 (e.g. third row in Table I), which is seen in the
visualization as a sliver (e.g. the third circle). Such small but
nonzero probabilities were often discovered in the evolutionary
experiments (Tables III and IV), and they turned out to make
a significant difference in performance compared to similar
fixed strategies where those probabilities are 0.0 (Figure 7).

for public memory’s best point and low or high fitness for
private memory’s best point) and four possible actions (exploit
or explore with public or private memory). The search yields
a new point for the agent to visit. Thus, S1 can be formalized
as

xt+1 = S1(Xpub(t),Xpriv(t)). (3)

Using the S2 strategy component, agents determine where
to put a newly discovered point (i.e. the action) depending on
the fitness of the new point xt+1 (i.e. the state). Thus, there
are two states (low fitness or high fitness) and two actions
(placing the point in public or private memory). Formally, S2

is used to update knowledge, i.e.

X (t+ 1) = {Xpub(t+ 1),Xpriv(t+ 1)}
= S2(z(xt+1),Xpub(t),Xpriv(t)).

(4)

where z is the fitness function.
The S1 and S2 strategies determine how agents behave and

how knowledge gets updated in the simulation. They can be

7

State:
Action: Place in Place in

public memory private memory
New point: low fitness 0.25 0.75
New point: high fitness 0.7 0.3

TABLE II: An example S2 strategy component. S2 consists of
2 × 2 probability values (for two actions and two states) for
determining to which memory to place the new point given
the discrete fitness of that point. Each row of probabilities
adds up to 1.0, and determines what the agent will do in
the corresponding state. In this example, the agent will e.g.
place each new low-fitness point into public memory with
0.25 probability and into private memory with 0.75 probability.
The agent strategies can be visualized graphically as shown in
Figure 2.

O1 O2

I1 I2 I3 I4 B

Fig. 3: An example CPPN with four inputs, a bias input, and
two outputs. The number of links and hidden nodes as well as
weights of existing links are not fixed, and can change during
evolution. Combinations of -1 and 1 values supplied to input
nodes I1, I2, I3, I4 act as indices into the rows and columns of
Tables I and II (with -1 value representing index 0). For S1,
I1 specifies whether public memory has low or high fitness,
I2 specifies whether private memory has low or high fitness,
I3 specifies whether the action is exploit or explore, and I4
specifies whether the action is carried out using public or
private memory; the output value of O1 for each combination
of the four inputs determines the action probability for the state
and action specified by that combination, which is the value
shown in the corresponding cell of Table I. Similarly, for S2, I1
specifies whether the new point has low or high fitness, and I4
specifies whether the action is to place that point in public or
private memory; the output value of O2 for each combination
of those two inputs determines the action probability for the
state and action specified by that combination, which is the
value shown in the corresponding cell of Table II. While
calculating probabilities for S2, I2 and I3 are set to 0.0. In this
manner, strategies can be represented continuously as CPPNs,
with S1 and S2 sharing the same network structure.

represented directly as vectors of real numbers such as those
in Tables I and II, and visualized graphically in Figure 2, and
this representation is sufficient for the hand-coded strategies
in this article. However, preliminary experiments on learning
strategies showed that representing them as continuous pat-
terns through CPPNs leads to better results. How CPPNs are
used to encode agent strategies will be described next.

F. Encoding Strategy Patterns

Compositional Pattern Producing Networks (CPPNs) are
neural networks with nodes that have various activation func-
tions. They are particularly useful for creating geometric
patterns such as symmetric ones [38]. Preliminary experiments
on learning strategies showed that representing them as con-
tinuous patterns through CPPNs leads to better results than
evolving a set of distinct probability values that correspond to
strategy tables.

To represent strategies as CPPNs, note that the S1 and
S2 strategy components can be seen as functions that output
the probability values in Tables I and II. For instance in the
case of S2, the function takes two binary inputs: whether
the new point has low or high fitness, and whether the
destination memory being considered is the public or private
memory. Each combination of these binary inputs generates
one of the probability values in Table II. This function can
be implemented as a CPPN with two inputs and one output,
which can be evolved with a neuro-evolution algorithm.

On the other hand, in the case of S1 there are four discrete
inputs: whether the best point in public memory has low
or high fitness, whether the best point in private memory
has low or high fitness, whether exploit or explore action is
being considered, and whether the source memory for that
action is public or private memory. This function can also be
represented as a CPPN with one output, but with four inputs
instead of only two, to produce probability values as in Table I.

To simplify the approach further, the functions for S1 and
S2 can be represented together by a single CPPN with four
inputs and two outputs (one output per strategy component;
Figure 3) instead of by two separate CPPNs with one output
each. Utilizing such a combined CPPN for both S1 and S2

allows a single population of networks to be evolved. The
components that belong together to evolve together, sharing
common structure.

To generate the 16 probability values in S1 (as in Table I),
all four inputs of the CPPN network are used. The inputs are
set to each combination of -1 or 1 in turn, representing the
different cells in the strategy table (where -1 corresponds to
the 0 index). The activation of the first output unit is passed
through a Gaussian or sigmoid function to limit its value
within the (0, 1) range, and the resulting number entered into
the corresponding S1 table cell. After all cells have been filled
in this manner, the rows of S1 are normalized to add up to 1. If
all values in a row are very small, then all cells in that row are
set to equal probability. The process for S2 is similar to S1,
except that only the first two inputs of the CPPN are used, and
the second output unit of the network is used to calculate the
values for the S2 cells. This approach allows agent strategies
to be evolved conveniently as CPPNs.

IV. EXPERIMENTS

This section provides an experimental analysis of CMAS
using the simulation setup described in the previous section.
The experiments aim to characterize various environments,
determine what kind of strategies work best, and test the
hypothesis that evolutionary optimization can be used to

8

learn better agent strategies (in particular specific strategies
for a given environment and general strategies that perform
well across multiple environments). The agent strategies are
encoded as CPPNs, and evolved using NEAT.

A. Simulation Environments

The simulation environments all had eight agents. The first
agent’s strategy was evaluated and the remaining seven agents
were given the role of opponents, all with a common manually
specified and fixed strategy. The S1 and S2 components of the
opponents’ strategies were set to constant probabilities, result-
ing in a CMAS environment with specific characteristics. Six
distinct opponent strategies (i.e. six different environments)
were implemented: always exploit or always explore, and
always using the best point from the public memory, always
using the best point from the private memory, or using either
of those two points with a 50% probability. These hand-coded
strategies were selected because they are intuitive, clear, and
represent common strategies in innovation search [5], [9], [10].

The environments also varied in search space dimensions
(N), resulting in two different densities of agents (i.e. number
of agents divided by search space size) since the number of
agents was the same: (1) sparse environments with N = 20
and (2) dense ones with N = 10. The K parameter of the NK
landscapes was set to three in all environments to provide
a moderate level of interaction among the N dimensions.
Such moderate interaction is motivated from the organizational
search perspective [51]. The fitness landscape changed via
initial boosting and subsequent crowding as agents moved
in the landscape, achieved by decaying the flocking intensity
from 1.05 to 0.9 linearly for each point over 10 agent visits
to the same point, with a flocking radius constant at 2.0.
Due to this dynamic nature of the fitness landscape, which
is directly related to how many agents there are on average
per search space point, the environments are more naturally
characterized by agent density rather than search space size.
These environment parameter values were chosen because
they resulted in meaningful innovation search behavior in
preliminary simulations.

Performance with several distinct strategies in such envi-
ronments is compared in Figure 4. In each environment and
for each evaluated strategy the simulation was repeated 200
times with randomized agent starting points in each run. The
performance of the strategy was then calculated by averaging
the performance across those runs, which in turn was defined
as the average fitness of the points that the agent with that
strategy visited during the 100 time steps (i.e the duration of
the run). Since fitness of points in the search space varies
between 0 and 1, so does each strategy’s performance.

In the sparse environments (Figure 4a), the exploit with
private memory strategy performed the best among all eval-
uated strategies (with p-value < 10−9 compared to the one
with the second highest mean performance), except in the
environments where the opponents used only private memory.
In those environments it tied with the exploit with public
memory strategy. Indeed, when the opponents never access
the public memory, that memory becomes equivalent to the

private memory for the evaluated agent. Thus, the successful
strategy in the sparse environments can be described as exploit
with a memory that is not accessible by the opponents.

On the other hand, when the environment was dense
(Figure 4b) exploring performed better than exploiting in
general. However, the best memory type to use while exploring
depended on the opponent strategy. For instance, when the
opponents explored with public memory, it was better for the
evaluated agent to use public memory (with p-value < 10−3),
whereas when the opponents exploited with public memory,
it was better to use private memory (with p-value < 10−8).
Indeed, in this case the regions around good public memory
points would generally become crowded and therefore have
low fitness, making private memory search more effective.

These results suggest that different environments require
different search strategies. Further, finding an effective strat-
egy for a given environment is possible and constitutes an
interesting and important challenge.

Obviously, such a hand-coded comparison can ever only
include a small subset of all possible strategies. The ones
included are prototypical and cover the space well, but there
is no reason to believe that they are the best for the given
environments. In order to determine experimentally whether
better strategies exist, a machine discovery method can be
employed, as will be done in the next two sections. First,
a strategy will be optimized for each environment separately;
then, the same method will be used to create a general strategy
by optimizing the average performance of a strategy across
multiple environments.

B. Evolving Strategies for a Particular Environment

To test the hypothesis that better strategies exist, strategies
were evolved using NEAT with a population of size 100 in
the same homogeneous environments as before. NEAT was
allowed to run for 500 generations, which was the point by
when performance plateaued in preliminary runs (Figure 5).
Evolutionary runs were repeated 64 times. Other parameters
were standard for NEAT [3] or otherwise listed in Table V in
the Appendix.

At each generation of an evolutionary run, the fitness of each
population individual, i.e. each CPPN, was calculated by first
generating the S1 and S2 probability tables from the CPPN,
and then using those tables to control the single evaluated
agent in the environment. Sizes of evolved CPPNs vary, but
average 26.6 and 26.9 nodes, and 75.4 and 75.6 links for sparse
and dense environments, respectively.

Tables III and IV show distributions of strategies evolved
on sparse and dense environments, respectively, with example
evolved strategies depicted in pie-charts as in Figure 2. To
visualize the distribution of the 64 evolved strategies, they
were first represented as 20-dimensional vectors and their
dimensionality was then reduced to one using PCA (separately
for sparse and dense environments). In the dense environments,
the first principal component captured 83% of the variance,
and in the sparse environments, 39%, whereas the second prin-
cipal component captured 8% and 16%, respectively, suggest-
ing that one-dimensional visualization is indeed meaningful.

9

0.54

0.56

0.58

0.60

0.62

0.64

0.66

0.68

0.70

0.72

0.74
P

er
fo

rm
an

ce

Performance of Strategies in Various Sparse Environments

Exploit with private memory
Exploit with public memory
Exploit with either memory
Explore with private memory
Explore with public memory
Explore with either memory

0.693

<10−9
<10−9

0.526 <10−9 <10−9

Exploit with
private memory

Exploit with
public memory

Exploit with
either memory

Explore with
private memory

Explore with
public memory

Explore with
either memory

Strategy of opponents in the environment

0

(a) Sparse environments

0.26

0.28

0.30

0.32

0.34

0.36

0.38

0.40

0.42

0.44

P
er

fo
rm

an
ce

Performance of Strategies in Various Dense Environments
Exploit with private memory
Exploit with public memory
Exploit with either memory
Explore with private memory
Explore with public memory
Explore with either memory

0.799

<10−9

<10−9

0.887

<10−8

<10−9

<10−9

<10−9

<10−8

<10−9

<10−8

<10−9

0.021

<10−9

<10−9

0.395

<10−8

<10−9

<10−9

<0.001

<10−9

<10−9

<10−9

0.729

Exploit with
private memory

Exploit with
public memory

Exploit with
either memory

Explore with
private memory

Explore with
public memory

Explore with
either memory

Strategy of opponents in the environment

0

(b) Dense environments

Fig. 4: Performance comparison among manually specified strategies in sparse (N = 20) and dense (N = 10) environments.
Statistical significance is estimated between averages over 200 starting locations and shown for the fixed strategies in each
environment. Significant differences are indicated by stars. Error bars denote one unit of standard error of the mean. Note
that because there is more interaction in the dense environment and therefore more crowding, the y-axes have different scales.
Each strategy (represented by a bar of different color) was evaluated in six different homogeneous environments with seven
identical opponents whose strategy is identified along the x-axis. Performance on each environment was averaged over 200
evaluation runs. Different strategies perform best in different environments; finding an effective strategy for a given environment
is possible and an important and interesting challenge.

10

Sparse Environment PCA for All Evolved Strategies Sample StrategiesId Opponents

←− Public Private −→ Pub. ↓ Pub. ↓ Pub. ↑ Pub. ↑
Priv. ↓ Priv. ↑ Priv. ↓ Priv. ↑ Point ↓ Point ↑

1 Exploit with public memory

−2.2 −2.0 −1.8 −1.6 −1.4 −1.2 −1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1

1

2 Explore with public memory

−2.2 −2.0 −1.8 −1.6 −1.4 −1.2 −1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1

1

3 Exploit with private memory

−2.2 −2.0 −1.8 −1.6 −1.4 −1.2 −1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5

1

2

3

4

5

4 Explore with private memory

−2.2 −2.0 −1.8 −1.6 −1.4 −1.2 −1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 1

2

5 Exploit with either memory

−2.2 −2.0 −1.8 −1.6 −1.4 −1.2 −1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1

1

6 Explore with either memory

−2.2 −2.0 −1.8 −1.6 −1.4 −1.2 −1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1

1

7
Environments 1-6 above and
one with RTTS opponents
(Avg. over all environments)

−2.2 −2.0 −1.8 −1.6 −1.4 −1.2 −1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1

1

8
One opponent from env.
1-6 and one RTTS opponent
(Heterogeneous environment)

−2.2 −2.0 −1.8 −1.6 −1.4 −1.2 −1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1

1

Exploit pub.
Exploit priv.
Explore pub.
Explore priv.

Point → pub.

Point → priv.

TABLE III: Strategies evolved in sparse environments (N = 20). The third column shows all 64 strategies evolved in the
environment with the opponents specified in the second column. The x-axis is the first principal component (from PCA across
all strategies in all sparse environments) and the y-axis is the fitness of the strategy. The x-axis represents primarily public vs.
private memory preference, with public memory use increasing toward the left and private memory use toward the right. Using
the pie-chart format of Figure 2, the fourth column displays sample strategies for each environment, numbered to indicate
their positions on the PCA plot. The black band around each circle indicates the average percentage of time the evolved agent
spent in the corresponding state. Most strategies cluster to the right, indicating that private memory search works well, except
in Environments 3 and 4, where the distribution is bimodal because the opponents do not use public memory. In some cases,
parts of the strategy do not matter and there is considerable diversity (e.g. in Environment 3). The best strategies are slightly
less than extreme, which allows them to perform better than fixed strategies.

11

Dense Environment PCA for All Evolved Strategies Sample StrategiesId Opponents

←− Public Private −→ Pub. ↓ Pub. ↓ Pub. ↑ Pub. ↑
Priv. ↓ Priv. ↑ Priv. ↓ Priv. ↑ Point ↓ Point ↑

1 Exploit with public memory

−1.2−1.0−0.8−0.6−0.4−0.20.00.20.40.60.81.01.21.41.61.82.02.2
0.0

0.1

0.2

0.3

0.4

1

1

2 Explore with public memory

−1.2−1.0−0.8−0.6−0.4−0.20.00.20.40.60.81.01.21.41.61.82.02.2
0.0

0.1

0.2

0.3

0.4

1 2 1

2

3 Exploit with private memory

−1.2−1.0−0.8−0.6−0.4−0.20.00.20.40.60.81.01.21.41.61.82.02.2
0.0

0.1

0.2

0.3

0.4

1 2 1

2

4 Explore with private memory

−1.2−1.0−0.8−0.6−0.4−0.20.00.20.40.60.81.01.21.41.61.82.02.2
0.0

0.1

0.2

0.3

0.4

1 2 1

2

5 Exploit with either memory

−1.2−1.0−0.8−0.6−0.4−0.20.00.20.40.60.81.01.21.41.61.82.02.2
0.0

0.1

0.2

0.3

0.4

1

1

6 Explore with either memory

−1.2−1.0−0.8−0.6−0.4−0.20.00.20.40.60.81.01.21.41.61.82.02.2
0.0

0.1

0.2

0.3

0.4

1 2 1

2

7
Environments 1-6 above and
one with RTTS opponents
(Avg. over all environments)

−1.2−1.0−0.8−0.6−0.4−0.20.00.20.40.60.81.01.21.41.61.82.02.2
0.0

0.1

0.2

0.3

0.4

1

1

8
One opponent from env. 1-6
and one RTTS opponent
(Heterogeneous environment)

−1.2−1.0−0.8−0.6−0.4−0.20.00.20.40.60.81.01.21.41.61.82.02.2
0.0

0.1

0.2

0.3

0.4

1

1

Exploit pub.
Exploit priv.
Explore pub.
Explore priv.

Point → pub.

Point → priv.

TABLE IV: Strategies evolved in dense environments (N = 10). The x-axis scale in the PCA plots is inverted so that the shift
from public to private memory use is in left-to-right direction as in Table III; the y-axes have a different scale from Table III.
In the dense environments, there is less variability due to stronger evolutionary pressure. Memory preference in different
environments is similar to that in Table III, with the exception of Environment 2, where an opposite memory preference
emerged. This effect is investigated further in Figure 6.

The first PCA dimension is the x-axis of the plots in the
third column of Tables III and IV. Note that the x-axis scale
is the same for all sparse environments, but different from
the axis for the dense environments. The y-axis of the PCA
plots indicates the fitness of the strategies. Interestingly, in
both sparse and dense environments the x-axis corresponds to
a preference for using public or private memory: The leftmost
strategies across all plots have the highest public memory use,
whereas the rightmost ones use private memory the most. This
tendency can be clearly seen e.g. in the two sample strategies

for Environment 4 in Table III.
Several interesting observations can be made based on

Tables III and IV. First, most strategies cluster on one side
of the PCA plot, except for Environments 3 and 4, where
a bimodal distribution is observed. These two environments
are the only ones where the opponents uses only private
memory. Since the opponents never use public points, public
memory effectively becomes just another private memory for
the evolved agent, and a bimodal distribution results. This
result is very similar to the observation in Section IV-A where

12

0 100 200 300 400 500

Generations

0.60

0.65

0.70

P
e
rf

o
rm

a
n
ce

Evolutionary Learning Curve

Maximum
Mean

Fig. 5: Learning curve for one of the evolutionary runs,
showing the maximum and mean performance of the evolved
population. The shaded region indicates standard error of the
mean. Maximum performance usually plateaued well before
500 generations.

public and private memory use resulted in similar performance
when the opponents used only private memory.

Second, the distribution of strategies evolved in most of
the remaining environments is biased toward strategies that
prefer private memory over public memory. Thus, evolution
discovered that it is good to be different from competitors. This
result also parallels the performance comparison of manual
strategies in Figure 4.

Third, in Environment 2 in Table IV, where opponents
explore with public memory, a surprising opposite effect is
seen: public memory is preferred over private memory. Not
only is this result counterintuitive, it is also the opposite of
that in its sparse counterpart.

This effect can be explained by measuring the number of
prior visits to a given area by the agent and its opponents.
As Figure 6 shows, the number of prior visits that affect the
evaluated agent is usually higher when the agent uses a public-
memory strategy than when it uses a private-memory strat-
egy, and therefore evolution usually favors private memory.
However, the opposite is true for dense environment 2: The
public-memory strategy actually results in fewer prior visits.
The reason becomes clear when the source of prior visits is
considered. When the evaluated agent uses private memory, it
is affected by many of its own prior visits, but manages to
avoid opponent’s prior visits relatively well. When it switches
to using public memory, it reduces its own prior visits, but
also increases the opponent’s visits. Such a trade is usually
detrimental, but not so in the dense environment 2. Because
the environment is dense and the opponents are exploring,
even when the agent is using private memory, the opponents
make many prior visits already by chance. Switching to public
strategy therefore does not increase the opponent visits much,
but it does reduce self-visits significantly. The net effect
is therefore beneficial, and evolution will select for public-

Public Private Public Private Public Private Public Private
0

1

2

3

4

5

6

7

8

9

10

11

12

13

Number of Prior Visits that Affect the Evaluated Agent

Prior visits by self

Prior visits by opponents

Sparse Dense Sparse Dense
Opponents: "Exploit public memory"

(Environment 1)
Opponents: "Explore public memory"

(Environment 2)

Fig. 6: The number of prior agent visits within the flocking
radius of the evaluated agent in Environments 1 and 2 in
Tables III and IV. Agent visits cause the landscape to sink due
to crowding, and lead to lower fitness. The bars labeled Public
represent the average number of prior visits when the evaluated
agent uses one of the 64 evolved strategies that prefer public
memory the most (i.e. the leftmost 64 strategies in the PCA
plots of all environments in Tables III, for the bars labeled
Sparse, and IV, for the bars labeled Dense. Similarly, the bars
labeled Private show the average number of visits with the
rightmost 64 strategies in the same tables. The bars’ colors,
white and gray, indicate prior visits by the evaluated agent
(i.e. “self”) or by its opponents, respectively. Switching from
private strategies to public ones increases the total number
of prior visits in three out of the four environments, but not
in dense environment 2. As a result, evolution selects for a
public memory strategy in this case demonstrating that it can
find effective strategies that would be difficult to discover by
hand.

memory strategy for dense environment 2.
Fourth, the agents encounter different states in dense and

sparse environments. This result can be seen by observing
the black bands around the circles of sample strategies in
Tables III and IV, which represent the average percentage
of time spent in each S1 and S2 state. Across all evolved
strategies in dense environments, the S1 state where public
and private memory have low fitness (i.e. the first circle) is
encountered 34% of the time on average, whereas in sparse
environments only 0.011%. Similarly, in dense environments
the evolved agents spent 69% of their time in the S2 state
where the new point has low fitness, but only 0.593% in sparse
environments. The reason is that the fitness landscape sinks
more in dense environments, and by the end of the 100-step
simulation, all points in the search space have low fitness. In
contrast, in sparse environments, there are often points with
high fitness that the agents can visit, and the agents evolve
to do so. Therefore, evolved agents spend most of their time
in high-fitness states in sparse environments and low-fitness
states in dense environments.

Fifth, a comparison of the PCA plots across the two tables

13

indicates that the strategies evolved in sparse environments
vary more than those evolved in dense ones. For example, in
Environment 3 in Table III the evolved strategies are dispersed
much more than their counterparts in Table IV. It is interesting
to analyze why. First, note that strategies located on the left
side (i.e. those that use public memory more often than private
memory) mostly differ in which actions they take when fitness
of public memory is low (i.e. the first two circles of sample
strategies 1, 2, and 3), and when the points they visit have
low fitness (i.e. the fifth circle). Note further that such states
are visited only rarely (i.e. less than 1% of the time), as
indicated by very little black band around the circles. The
reason is that only the agent itself changes public memory
(not its opponents, which exploit with private memory), and it
places only high-fitness points in it. Therefore, public memory
always has a high fitness, and as a result, the first two
states are rarely encountered and the corresponding parts of
the strategy (represented by the first two circles) are rarely
used. Also, since low-fitness points are usually not visited in
sparse environments, the fifth circle is rarely used. Similar
observations can be made for the strategies on the right side
(i.e. those that use private memory more often, such as sample
strategies 4 and 5): They vary mostly in states where private
memory has low fitness (i.e. the first and third circle) as
well as when visited points have a low fitness (i.e. the fifth
circle), and these are indeed states they rarely visit. Thus,
changes to those parts of the strategy do not affect the evolved
agent’s performance, and evolution results in diverse solutions
for them. In contrast, in dense environments all states are
encountered at least 9% of the time on average: All parts of
the strategy are therefore useful, and there is less variance.

In Environment 3, opponents exploit private memory, and
place the new points they find in private memory, which makes
the evolved agent the only one (among the eight agents in the
simulation) that changes public memory. Since each one of
sample strategies 1, 2, and 3 places new high-fitness points in
public memory (i.e. the sixth circle), public memory always
has high fitness. Therefore, the first two states (which together
represent public memory having low fitness) are not observed
with those strategies. Thus, the corresponding parts of the
strategy (i.e. the first two circles and rows in the S1 table)
are not used during simulation. In contrast, if the evolved
agent uses private memory instead of public, as in sample
strategy numbered 4 and 5, the unused states are different:
The first and third circles, which together represent the state of
private memory having low fitness, do not get used. Since low
fitness points are usually not visited in sparse environments,
the parts of the strategy for new low-fitness points (i.e. the
fifth circle and the first row of the S2 table) are not used
either. Thus, changes to those parts of strategy do not affect
the evolved agent’s performance, and during evolution strategy
variants with differences in those unused parts do arise, which
leads to higher diversity in the evolved strategies in sparse
environments. On the other hand, in dense environments all
states are encountered at least 9% of the time on average,
which makes most states useful in each environment for the
evolved strategies. Since most parts of the strategies are used
in dense environments, there is relatively lower variance in

evolved strategies compared to sparse environments.
Sixth, the best strategies are not perfectly extreme, unlike

the fixed hand-coded ones, but often contain small slivers
of probability for alternative actions. Such small differences
allow them to perform better. As can be seen in Figure 7,
in each environment the evolutionary optimization resulted in
a strategy that performs at least as well as the best manual
strategy.

Thus, the results verify the hypothesis that custom-designed
strategies are usually more successful than generic ones. An
interesting question is: Is there a general strategy that works
well on all environments?

C. Evolving General Strategies

Two ways of evolving general strategies were tested: evolv-
ing in multiple homogeneous environments and in a single
heterogeneous environment. In the first approach, seven ho-
mogeneous environments were used, consisting of the six
environments above, and an environment with seven opponents
that use an adapted RTTS strategy (which will be described
in the next section). During evolution the fitness of each
evaluated strategy was calculated by averaging the fitness
score across those environments. The main disadvantage of
this approach is that it takes a very long time: each strategy
must be evaluated in seven environments in the using a total
of 700 simulation steps.

The approach that uses a single heterogeneous environment
avoids this problem. There is one opponent of each type in
this environment, allowing the agent to interact with various
types of opponents at once. Therefore, evaluation only requires
one environment and 100 simulation steps. As in previous
experiments, there are seven opponents but now each of them
comes from a different homogeneous environment.

The strategies evolved using these two approaches can
be seen in Tables III and IV as Environments 7 and 8.
Private memory was mostly preferred over public memory in
both sparse and dense environments. With the homogeneous
approach, strategies evolved in the sparse environment ex-
ploited private memory when private memory had high fitness
(Environment 7 in Table III); otherwise, their behavior varied,
including exploring private memory while still sometimes
exploiting it, as shown in the sample strategy. When the
environments were dense (Environment 7 in Table IV), this
approach evolved strategies that mostly explored, but also
rarely exploited with private memory.

Similarly, in the heterogeneous approach (Environment 8),
the evolved strategies in the sparse environment exploited with
private memory when private memory had high fitness, but
also explored when private memory had low fitness. On the
other hand, the strategies evolved in the dense heterogeneous
environment always explored with private memory. The likely
reason is the same as in Section IV-B: there are opponents
that use public memory, making it less beneficial to use.

Performance of the best strategies evolved using the two
general approaches was compared to that of the best strategy
evolved specifically for that particular environment, as well as
to the manual strategy that performed best in that environment.

14

0.69

0.70

0.71

0.72

0.73

0.74

0.75
P

er
fo

rm
an

ce

Performance of Strategies in Various Sparse Environments
Best manual for the particular env.
Evolved in the particular env.
Evolved in multiple homogen. env.
Evolved in the heterogen. env.
Best manual overall

<10−9

<10−5

<10−9

<10−8

<10−8

<10−8

<10−9

<10−8

<10−9

<10−9

<10−8

<10−5

<10−9
<10−9

<10−9

<10−9

<10−8

<0.001 <10−8

<10−5

<0.001

<10−8

<10−8

<10−8

<10−9

0.327

<10−9

<10−9

<10−7

<10−8

<10−9

<10−5

<10−8

<10−9

<10−8

<10−6

<10−9 <10−9

<10−9

1.0

<10−9

<0.001

Exploit with
private memory

Exploit with
public memory

Exploit with
either memory

Explore with
private memory

Explore with
public memory

Explore with
either memory

One of each
(heterogen. env.)

Strategy of opponents in the environment

0

(a) Sparse environments

0.30

0.32

0.34

0.36

0.38

0.40

0.42

0.44

0.46

P
er

fo
rm

an
ce

Performance of Strategies in Various Dense Environments
Best manual for the particular env.
Evolved in the particular env.
Evolved in multiple homogen. env.
Evolved in the heterogen. env.
Best manual overall

<10−9

0.828

<10−8

<10−9

<10−8

<10−8

<10−9

0.055

<10−9

<10−9

<10−8

<10−8

<10−9

<10−8

<10−8

<10−9

<10−8

<10−9

<10−9

<0.01

<10−9

<10−9

<10−8

<10−8

<10−9

<0.01

<10−9

<10−9

<10−8

<10−8

<10−9

0.187

<10−9

<10−9

<10−8

<10−8

<10−8 <10−8

<10−9

1.0

<10−9

<10−8

Exploit with
private memory

Exploit with
public memory

Exploit with
either memory

Explore with
private memory

Explore with
public memory

Explore with
either memory

One of each
(heterogen. env.)

Strategy of opponents in the environment

0

(b) Dense environments

Fig. 7: Performance comparison among evolved strategies as well as the best manual strategy from Figure 4 in sparse (N = 20)
and dense (N = 10) environments. Statistical significance is estimated between averages over 64 evolution runs. Significant
differences are indicated by stars. The same six environments are included as in Figure 4, as well as a seventh one where each
opponent had a different hand-coded strategy, where the strategies whose performance is shown with the second and fourth
bars in the plot are identical. Hence the 1.0 p-value between those two bars. Strategies evolved for each environment separately
perform the best in all cases, while the general strategies evolved in multiple environments are better than the best manual
overall strategy in almost all cases. Machine discovery is therefore a powerful approach to develop CMAS strategies.

15

The results can be seen in Figure 7. In both sparse and dense
environments, the performance of the strategy that was evolved
for that particular environment was always the best of the
evolved strategies (with p-value < 10−9 compared to the
strategy with the second highest mean in most environments,
and < 10−3 in the rest), and that was always followed by
the single strategy that was evolved in multiple homogeneous
environments, which in turn always performed better than
the one evolved in the single heterogeneous environment
(with p-value < 10−7 in all environments). Interestingly, the
performance of the single heterogeneous environment was on
average within 1% of that of multiple homogeneous environ-
ments, even though it required one-seventh of the evolution
time. Thus, evolution in a heterogeneous environment is an
elegant and effective approach to finding general strategies.

Overall, the similarity in performance between the different
learning approaches suggests that it may be possible to evolve
a single strategy that is effective in various environments,
although the very best results are obtained by customizing
the strategy to each particular environment separately.

D. Real-Time Tree-Search Agents

In order to highlight how different CMAS problems are
from conventional search problems, a real-time tree search
(RTTS) algorithm was devised for the NK fitness landscape.
RTTS is real-time in the sense that it does not perform the
whole search offline like A* does, but instead alternates be-
tween planning and execution phases by performing a limited
look-ahead search at each state before selecting an action
and moving to a new state. In this respect, this algorithm
is similar to e.g. Real-Time A* (RTA*) [2], a well-known
search method in the single-agent tradition. Further, at each
step RTTS, like RTA*, performs a full exploitation search from
the current point, i.e. considers all successor states reachable
by exploitative search actions. In contrast, CMAS also includes
exploratory search actions, which can potentially reach any
point in the search space.

The reason for defining and employing RTTS instead of
simply using RTA* is that the search domain of NK fitness
landscapes differs in several ways from those for which RTA*
was designed: (1) The goal is not to reach a certain point
in the search space as in RTA*, but rather to follow a path
that yields as much fitness as possible; (2) Since there is no
goal point, there cannot be a heuristic to calculate the cost of
reaching a goal point; (3) Avoiding loops is not a concern as
long as the revisited points have high fitness; (4) The search
space is dynamic due to flocking of agents, which makes it
less useful to keep a hash table of observed states and their
estimated costs for returning to those states. Thus, RTTS can
be seen as an adaptation of RTA* to CMAS problems.

The RTTS algorithm works as follows. Given an agent’s
state s (in this case, the last point the agent has visited), a score
is calculated for each successor state s′. Since only exploit
actions are considered, a successor of a state is equivalent to
a neighbor of a point in the space. Each point has one neighbor
s′i per dimension i (1 ≤ i ≤ N), obtained by flipping the bit of
that dimension in point s. For each neighbor s′i, RTTS carries

Fig. 8: Point evaluations with RTTS and an evolved strategy.
The environment is 20-dimensional and shown in a spherical
visualization where elevation and brightness represent fitness,
and distance from the center point approximates the Hamming
distance from it (see Appendix A for details of this visualiza-
tion). The 211 search points that the RTTS agent evaluates in
a single time step in order to determine which action to take
are shown as triangles. All of them are within two steps of the
starting point for the search, shown at the center. In contrast,
evolved strategies perform eight point evaluations on average
(shown as squares), underscoring how different the CMAS
strategies are from classical single-agent search methods.

out a look-ahead search starting from that state, and calculates
the score of s′i by summing the fitness of that point and the
maximum fitness among those of the successors of s′i. The
agent’s next move is chosen as the exploitation action that
results in the state with the maximum score among all s′i.

In fact, what the RTTS agent does for each s′i is identical
to what the agent does for s itself. Thus, the agent’s search
can be described as fixed-depth tree search. When the depth
of this search tree is set to two, the points that RTTS evaluates
consist of point s itself, all neighbors s′i of s (1 ≤ i ≤ N),
and all neighbors of all s′i. The number of these points is
1 + N(N + 1)/2, which amounts to 56 and 211 points for
N = 10 and N = 20, respectively. Therefore, to keep the
number of evaluations at a reasonable level, the RTTS search
depth was limited to two (Figure 8).

The results, compared to best evolved CMAS strategies, are
shown in Figure 9. Note that RTTS with search of depth
one would only reach the nearest neighbors, amounting to
the always exploit strategy, with the small difference that
all neighbors are considered instead of stopping at the first
neighbor that improves over the current point. At depth two,
however, RTTS is a distinctly different strategy from those
considered so far; it is a traditional single-agent search method
adapted to the CMAS setting.

The differences between RTTS and CMAS methods are
clear in the results. The evolved agents as well as the manual
CMAS strategies evaluate only eight points per step on average
(Figure 8). Thus, they are significantly more economical than
RTTS in a high-dimensional landscape (i.e. 26 times more in

16

Exploit with
private memory

Exploit with
public memory

Exploit with
either memory

Explore with
private memory

Explore with
public memory

Explore with
either memory

One of each
(heterogen. env.)

Strategy of opponents in the environment

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
P

er
fo

rm
an

ce
Performance of Strategies in Various Sparse Environments

Best manual for the particular env.
Evolved in the particular env.
RTTS (non-limited # of points)
RTTS (matched # of points)

<10−9

<10−9

<10−9

<10−9

<10−9

<10−9

<10−9

<10−9

<10−9

<10−9

<10−9

<10−9

<10−9

<10−9

(a) Sparse environments

Exploit with
private memory

Exploit with
public memory

Exploit with
either memory

Explore with
private memory

Explore with
public memory

Explore with
either memory

One of each
(heterogen. env.)

Strategy of opponents in the environment

0.0

0.1

0.2

0.3

0.4

0.5

P
er

fo
rm

an
ce

Performance of Strategies in Various Dense Environments
Best manual for the particular env.
Evolved in the particular env.
RTTS (non-limited # of points)
RTTS (matched # of points)

<10−9

<10−9 <10−9

<10−9

<10−9

<10−9

<10−9

<10−9

<10−9

<10−9

<10−9

<10−9

<10−9

<10−9

(b) Dense environments

Fig. 9: Performance of the RTSS strategy compared to the best manual strategy (Section IV-A) and the best evolved strategy
(Section IV-B), in sparse (N = 20) and dense (N = 10) environments. The non-limited version was based on a complete
2-ply lookahead at each step, whereas the matched version evaluated the same number of points as the other methods. The
non-limited version is comparable to the other methods, but the matched version is much worse. The assumptions of RTSS do
not hold in CMAS problems, which thereby require a different approach.

17

the sparse environments and seven times more in the dense
ones). To make RTTS more comparable with the CMAS
methods, it is possible to match the number of points it
considers with that of the CMAS methods, by limiting it to
one action every 26 time steps in the sparse environments and
every seven time steps in the dense ones. As can be seen in
Figure 9, under such limited resources, RTTS makes very little
progress. Whereas the CMAS methods are designed to proceed
with the information gained from only a few points, RTTS
expects to see the entire depth-2 search tree before making a
decision.

Interestingly, even without the resource limitation, RTTS is
still not better than the CMAS methods (Figure 9). The reason
is that it is constantly mislead by the dynamic landscape: The
fitness value of a point that looked promising during the look-
ahead may diminish once the agent gets there, and it may miss
points whose value increased.

Thus, CMAS problems are different from classical single-
agent search problems, and can be solved better by methods
designed for such problems in mind, such as those proposed
in this article.

E. Visualizing Evolved Strategies

A particularly interesting behavior was observed in strate-
gies evolved in sparse environments. The probability of an
agent encountering other agents in sparse fitness landscapes
is rather small. Therefore, short exploitation jumps allow the
agent to ride a boosting wave, i.e. to stay at the forefront of the
area that is being boosted as it moves through the landscape,
leaving a trail of past visited points that have sunk in fitness
(Figure 10). At each step, the agent boosts all nearby points in
the neighborhood defined by the flocking radius. Therefore, as
the new point starts losing fitness due to crowding, the agent
can find a nearby point with similar fitness that is partially
boosted, similarly to a surfer riding a wave.

Such wave-riding behavior is particularly interesting be-
cause it resembles what happens in real-world innovation
search. Companies often make slight improvements to their
existing products, exploiting their initial design for many years
without a significant redesign. The evolutionary simulations
in this article rediscovered this strategy and demonstrated
computationally why it is effective.

V. DISCUSSION AND FUTURE WORK

The experiments in Section IV-B showed that distinctly
different search strategies evolve in different environments,
and they are generally better than strategies evolved in other
environments, evolved general strategies, and manual strate-
gies. They are also significantly more complex than the
manual strategies, and would be difficult to design without
an automatic machine discovery method such as evolutionary
computation. The main hypothesis of the article was therefore
verified with these results: evolutionary computation is useful
in discovering good strategies for CMAS problems.

The main areas of future work include developing more
versatile strategy representations, applying the framework
to analyzing real-world archival data, characterizing CMAS

Fig. 10: A single agent’s wave-riding behavior shown in
the spherical visualization, with agent’s past visited points
marked with dark dots and its last position pointed to by the
box (see Appendix A for details of the visualization). The
agent follows a movement pattern of jumping to a point that
has been partially boosted, then as the current point starts
getting crowded, jumping to a similar nearby point. This
behavior is clearest in sparse environments, demonstrating how
agents can compete well by being constantly on the move. It
is also similar to incremental improvements in many high-
technology industries, giving them a computational interpre-
tation. An animation of wave-riding behavior can be seen at
http://nn.cs.utexas.edu/?waveriding.

theoretically, and extending the framework with opponent
modeling and communication.

First, the strategies were only coarsely encoded in this study.
For instance, agents currently choose the best point of either
the public memory or the private memory. A new action could
be added to let the agents pick the best of both memories,
depending on their fitness. The observation time of memory
points could also be taken into account to allow the agents treat
outdated points in memory differently. Furthermore, the power
of CPPN to represent strategies was not yet fully utilized.
Because their inputs and outputs are continuous, CPPNs could
in principle represent strategies over very large number of
(even continuous) states and actions. Such an approach would
make it possible to represent much more refined strategies,
which could in turn lead to more complex emergent behaviors,
and to more accurate modeling of real-world search.

In addition to evolving environment-specific strategies, Sec-
tion IV-C showed how a single general strategy can be evolved
to perform well across multiple different environments, with
only a small cost in performance. For such a strategy to scale
up to even more diverse environments, it might be beneficial
to allow multimodal behaviors, so that the same agent strategy
can have distinct behaviors in different contexts [52]. A further
step in this direction would be to coevolve all or a subset
of the opponents as well. In this manner, the environment
could present more diverse challenges, and more interesting

http://nn.cs.utexas.edu/?waveriding

18

and perhaps realistic general strategies could evolve.
More generally, the simulations in this article suggest that

the CMAS approach could be used to provide insight into
what kinds of strategies work well in real-world competitive
multi-agent search. One possibility is to set up the search
space and the agent parameters based on real-world archival
data, such as the historical record on patents and products in
a particular industry. Search can then be simulated on that
landscape, explaining why certain strategies were effective,
and potentially discovering new strategies that would have
worked even better.

On the other hand, CMAS is a general and formally defined
problem domain, which should make it possible to analyze
it theoretically. For example, stochastic processes could be
used to characterize the scope and power of the search
methods, deriving convergence and dominance conditions, as
has been done in prior work on coevolution and estimation of
distribution algorithms [31], [53], [54], [55].

Aspects of real-world competitive multi-agent search that
were not addressed in this study include opponent modeling
and explicit interactions between agents via direct communi-
cation. The former would let agents adapt to the environment
by altering their strategies depending on the behavior of
opponents they observe [56]. The latter would allow agents
to cooperate more effectively, form coalitions, and negotiate.
These extensions would all be useful in modeling real-world
innovation search, and constitute a most interesting direction
of future work.

VI. CONCLUSION

In this article, competitive multi-agent search was intro-
duced as a formalization of human problem solving, with
innovation search in organizations as a specific motivating
example. In this formalization, the agents interact through
knowledge of other agents’ searches and through the dy-
namic changes in the search landscape that result from these
searches. The main contribution is to show that evolutionary
computation is a useful method for CMAS problems: it is
possible to discover effective search strategies that might be
hard to design by hand, and understand why they are effective.
CMAS thus demonstrates an interesting role for evolutionary
computation: not only it can be used as an automated method
for engineering, but also a way to understand how human
behavior can be more effective. In the future, it may be
possible to use CMAS simulations to make recommendations
to human decision makers, as well as inform policy makers
that aim at encouraging innovation and creativity.

APPENDIX

APPENDIX A. SPHERICAL NK FITNESS LANDSCAPE
VISUALIZATION

Although high-dimensional NK landscapes are useful in
testing ideas about search and optimization in complex do-
mains, it is not possible to visualize them accurately, and
it is therefore difficult to develop an intuitive understanding
of what happens in such spaces. In a typical visualization,
two dimensions are chosen to be represented accurately along

each axis, and the visualization is repeated for the different
combinations of values for the other dimensions. The main
problem with such a visualization is that the continuity of the
space is lost, i.e. nearby points can end up very far apart on
the visualization, disallowing natural intuitions about space.
Another issue with this kind of visualization is that it shows
all 2N points in the space; as N grows, this number becomes
prohibitively large, making it impossible to visualize NK
landscapes with sufficiently large N .

A different, novel approach is taken in Figures 8 and 10.
In this spherical approach, the continuity of the space is pre-
served, and the space is represented with variable resolution.
One point is chosen as the focus (e.g. 11111 in the five-
dimensional case), and all of its neighbors in the original space
(e.g. 01111, 10111, 11011, 11101, and 11110) are shown as
its neighbors on the sphere, around a circle at distance 1.
At distance 2, points with two bits away from the original
are shown, by combining bit flips of the adjacent neighbors
(to 00111, 10011, 11001, 11100, 01110), and so on until the
complement (00000) of the focus point is reached at the other
side of the sphere. In this manner, continuity of the original
space is maintained in the grid that results on the sphere:
nearby points in the grid are indeed neighbors in the original
space, differing by one bit. The elevation and brightness of the
spherical surface represents the fitness of the points on it: The
higher the point and the lighter it is, the higher the fitness.

The continuity, however, imposes a trade-off: The grid is
a complete representation of the space only near the poles
(i.e. at distance 1 and 4 in the five-dimensional case); at the
equator, it can only represent sample points in the space (i.e. at
distances 2 and 3, only five of the ten points are located on the
grid). For visualization (as in Figures 8 and 10), other points of
interest can be shown in the quadrilateral regions between the
actual grid points, although their specific locations within those
regions are undetermined. They are placed so that the distance
between each point and the north pole point corresponds to
the Hamming distance between them. Among the quadrilateral
regions along the meridian at that distance, each point is in
the one whose corners are closest to the point.

The main purpose of this visualization is to represent
the local neighborhood of a specific point intuitively as a
continuous space, with gradually less resolution towards the
horizon. It thus gives a concrete snapshot of the current state
of the search. The focus point can also be moved as the search
progresses, resulting in a detailed track of the process. Such a
visualization tool is implemented in a software package NKVis,
i.e. a visualization tool for NK fitness landscapes, which is
freely available at http://nn.cs.utexas.edu/?nkvis.

REFERENCES

[1] S. A. Kauffman, The Origins of Order. New York: Oxford University
Press, 1993.

[2] R. E. Korf, “Real-time heuristic search,” Artificial Intelligence,
vol. 42, no. 2-3, pp. 189 – 211, 1990. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/0004370290900544

[3] K. O. Stanley and R. Miikkulainen, “Evolving Neural Networks Through
Augmenting Topologies,” Evolutionary Computation, vol. 10, pp. 99–
127, 2002. [Online]. Available: http://nn.cs.utexas.edu/keyword?stanley:
ec02

http://nn.cs.utexas.edu/?nkvis
http://www.sciencedirect.com/science/article/pii/0004370290900544
http://nn.cs.utexas.edu/keyword?stanley:ec02
http://nn.cs.utexas.edu/keyword?stanley:ec02

19

APPENDIX B. SIMULATION AND NEAT PARAMETERS

Simulation Parameter Value
N (for the NK model) 10 and 20
K (for the NK model) 3
Number of agents 8
Number of time steps per run 100
Number of runs per strategy evaluation 200
Flocking intensity 1.05 → 0.9
Flocking radius 2
Evolutionary generations 500
Evolutionary repeats per setup 64
Evolutionary population size 100

NEAT Parameter Value
AddBiasToHiddenNodes 1
AdultLinkAge 2
AgeSignificance 1.2
AllowAddNodeToRecurrentConnection 0
AllowRecurrentConnections 0
AllowSelfRecurrentConnections 0
CompatibilityModifier 0
CompatibilityThreshold 20
DisjointCoefficient 1.0
DropoffAge 10
ExcessCoefficient 1.0
ExtraActivationFunctions 1
ExtraActivationUpdates 19
FitnessCoefficient 1.0
ForceCopyGenerationChampion 1
LinkGeneMinimumWeightForPhentoype 0
MutateAddLinkProbability 0.2
MutateAddNodeProbability 0.2
MutateDemolishLinkProbability 0.04
MutateLinkProbability 0.2
MutateLinkWeightsProbability 0.8
MutateNodeProbability 0.05
MutateOnlyProbability 0.5
MutateSpeciesChampionProbability 0
MutationPower 2
OnlyGaussianHiddenNodes 0
SignedActivation 0
SmallestSpeciesSizeWithElitism 1
SpeciesSizeTarget 0
SurvivalThreshold 0.2
WeightDifferenceCoefficient 0.8

TABLE V: Parameters used in the experiments for the multi-
agent simulation and NEAT.

[4] D. A. Levinthal and J. G. March, “A model of adaptive organizational
search,” Journal of Economic Behavior and Organization, vol. 2, pp.
307–333, 1981.

[5] R. Katila, “New product search over time: Past ideas in their prime?”
Academy of Management Journal, vol. 45, pp. 995–1010, 2002.

[6] R. Katila, E. Bahceci, and R. Miikkulainen, “Organizing for innovation:
Exploratory, ambidextrous and exploitative units in competitive environ-
ments,” 2010, working paper.

[7] D. A. Levinthal, “Adaptation on rugged landscapes,” Management
Science, vol. 43, no. 7, pp. pp. 934–950, 1997. [Online]. Available:
http://www.jstor.org/stable/2634336

[8] G. Gavetti and D. Levinthal, “Looking forward and looking backward:
Cognitive and experiential search,” Administrative Science Quarterly,
vol. 45, pp. 113–137, 2000.

[9] H. Greve, “A behavioral theory of R&D expenditures and innovations:
Evidence from shipbuilding,” Academy of Management Journal, vol. 46,
pp. 685–702, 2003.

[10] C. Helfat, “Evolutionary trajectories in petroleum firm R&D,” Manage-
ment Science, vol. 40, pp. 1720–1747, 1994.

[11] H. Greve and A. Taylor, “Innovations as catalysts for organizational
change: Shifts in organizational cognition and search,” Administrative
Science Quarterly, vol. 45, pp. 54–80, 2000.

[12] J. Rivkin, “Imitation of complex strategies,” Management Science,
vol. 46, pp. 824–845, 2000.

[13] R. Katila, J. Rosenberger, and K. Eisenhardt, “Swimming with sharks:
Technology ventures, defense mechanisms, and corporate relationships,”
Administrative Science Quarterly, vol. 53, pp. 295–332, 2008.

[14] P. Hart, N. Nilsson, and B. Raphael, “A formal basis for the heuristic de-
termination of minimum cost paths,” Systems Science and Cybernetics,
IEEE Transactions on, vol. 4, no. 2, pp. 100 –107, july 1968.

[15] R. E. Korf, “Depth-first iterative-deepening: An optimal admissible tree
search,” Artificial Intelligence, vol. 27, pp. 97–109, 1985.

[16] J. Lohn, D. Linden, G. Hornby, W. Kraus, A. Rodriguez-Arroyo, and
S. Seufert, “Evolutionary design of an X-band antenna for NASA’s space
technology 5 mission,” in National radio science meeting, 2004, pp.
2313–2316.

[17] V. K. Valsalam, J. A. Bednar, and R. Miikkulainen, “Developing
complex systems using evolved pattern generators,” IEEE Transactions
on Evolutionary Computation, vol. 11, no. 2, pp. 181–198, 2007.
[Online]. Available: http://nn.cs.utexas.edu/keyword?valsalam:ieeetec07

[18] M. Mitchell, An Introduction to Genetic Algorithms. Cambridge, MA:
MIT Press, 1996.

[19] J. Kennedy, R. Eberhart, and Y. Shi, Swarm intelligence. Morgan
Kaufmann Publishers, 2001.

[20] H. Hosseini, “The intelligent water drops algorithm: a nature-inspired
swarm-based optimization algorithm,” International Journal of Bio-
Inspired Computation, vol. 1, no. 1/2, p. 71, 2009. [Online]. Available:
http://www.inderscience.com/link.php?id=22775

[21] E. Rashedi, H. Nezamabadi-pour, and S. Saryazdi, “GSA: A
Gravitational Search Algorithm,” Information Sciences, vol. 179,
no. 13, pp. 2232–2248, June 2009. [Online]. Available: http:
//dx.doi.org/10.1016/j.ins.2009.03.004

[22] J. Kennedy, R. Eberhart, et al., “Particle swarm optimization,” in Proc. of
IEEE international conference on neural networks, vol. 4. Piscataway,
NJ: IEEE, 1995, pp. 1942–1948.

[23] M. Dorigo and T. Stützle, Ant colony optimization. MIT
Press, 2004. [Online]. Available: http://books.google.com/books?id=
aefcpY8GiEC&pgis=1

[24] J. Pearl, Heuristics: Intelligent Search Strategies for Computer Problem
Solving. Reading, MA: Addison-Wesley, 1984.

[25] I. Zuckerman and A. Felner, “The MP-MIX algorithm: Dynamic search
strategy selection in multiplayer adversarial search,” Computational
Intelligence and AI in Games, IEEE Transactions on, vol. 3, no. 4,
pp. 316 –331, dec. 2011.

[26] D. E. Knuth and R. W. Moore, “An analysis of alpha-beta
pruning,” Artificial Intelligence, vol. 6, no. 4, pp. 293 – 326,
1975. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/0004370275900193

[27] R. E. Korf, “Multi-player alpha-beta pruning,” Artificial Intelligence,
vol. 48, no. 1, pp. 99 – 111, 1991. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/000437029190082U

[28] J. B. Pollack, A. D. Blair, and M. Land, “Coevolution of a backgammon
player,” in Proceedings of the 5th International Workshop on Artificial
Life: Synthesis and Simulation of Living Systems (ALIFE-96), C. G.
Langton and K. Shimohara, Eds. Cambridge, MA: MIT Press, 1996.

[29] H. Juille and J. B. Pollack, “Dynamics of co-evolutionary learning,” in
In Proceedings of the Fourth International Conference on Simulation of
Adaptive Behavior. MIT Press, 1996, pp. 526–534.

[30] J. Werfel, M. Mitchell, and J. Crutchfield, “Resource sharing and
coevolution in evolving cellular automata,” Evolutionary Computation,
IEEE Transactions on, vol. 4, no. 4, pp. 388 – 393, nov 2000.

[31] K. O. Stanley and R. Miikkulainen, “Competitive coevolution through
evolutionary complexification,” Journal of Artificial Intelligence
Research, vol. 21, pp. 63–100, 2004. [Online]. Available: http:
//nn.cs.utexas.edu/keyword?stanley:jair04

[32] K. Knight, “Are many reactive agents better than a few deliberative
ones?” in Proceedings of the 13th international joint conference on
Artifical intelligence - Volume 1. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 1993, pp. 432–437. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1624025.1624086

[33] R. Axelrod, The complexity of cooperation: Agent-based models of
competition and collaboration. Princeton Univ Pr, 1997.

[34] J. Epstein, “Agent-based computational models and generative social
science,” Complexity, vol. 4, no. 5, pp. 41–60, May 1999.

[35] J. Holland and J. Miller, “Artificial Adaptive Agents in Economic
Theory,” American Economic Review, vol. 81, no. 2, pp. 365
– 71, 1991. [Online]. Available: http://ideas.repec.org/a/aea/aecrev/
v81y1991i2p365-71.html

[36] P. J. Hoen, K. Tuyls, L. Panait, S. Luke, and J. A. L. Poutré,
“An overview of cooperative and competitive multiagent learning.” in
LAMAS, 2005, pp. 1–46.

http://www.jstor.org/stable/2634336
http://nn.cs.utexas.edu/keyword?valsalam:ieeetec07
http://www.inderscience.com/link.php?id=22775
http://dx.doi.org/10.1016/j.ins.2009.03.004
http://dx.doi.org/10.1016/j.ins.2009.03.004
http://books.google.com/books?id=_aefcpY8GiEC&pgis=1
http://books.google.com/books?id=_aefcpY8GiEC&pgis=1
http://www.sciencedirect.com/science/article/pii/0004370275900193
http://www.sciencedirect.com/science/article/pii/0004370275900193
http://www.sciencedirect.com/science/article/pii/000437029190082U
http://www.sciencedirect.com/science/article/pii/000437029190082U
http://nn.cs.utexas.edu/keyword?stanley:jair04
http://nn.cs.utexas.edu/keyword?stanley:jair04
http://dl.acm.org/citation.cfm?id=1624025.1624086
http://ideas.repec.org/a/aea/aecrev/v81y1991i2p365-71.html
http://ideas.repec.org/a/aea/aecrev/v81y1991i2p365-71.html

20

[37] J. March and H. Simon, Organizations. New York: Wiley, 1958.
[38] K. Stanley, “Compositional pattern producing networks: A novel abstrac-

tion of development,” Genetic Programming and Evolvable Machines,
vol. 8, no. 2, pp. 131–162, June 2007.

[39] H. J. Chiel, R. D. Beer, and J. C. Gallagher, “Evolution and analysis of
model CPGs for walking: I. Dynamical modules,” Journal of Computa-
tional Neuroscience, vol. 7, no. 2, pp. 99–118, 1999.

[40] I. Harvey, P. Husbands, D. Cliff, A. Thompson, and N. Jakobi, “Evo-
lutionary robotics: the sussex approach,” Robotics and autonomous
systems, vol. 20, no. 2, pp. 205–224, 1997.

[41] B. Hutt and K. Warwick, “Synapsing variable length crossover:
Biologically inspired crossover for variable length genomes,” in
Artificial Neural Nets and Genetic Algorithms, D. Pearson, N. Steele,
and R. Albrecht, Eds. Springer Vienna, 2003, pp. 198–202. [Online].
Available: http://dx.doi.org/10.1007/978-3-7091-0646-4 36

[42] H. Moriguchi and S. Honiden, “Cma-tweann: efficient optimization
of neural networks via self-adaptation and seamless augmentation,” in
Proceedings of the fourteenth international conference on Genetic and
evolutionary computation conference. ACM, 2012, pp. 903–910.

[43] N. Sigal and B. Alberts, “Genetic recombination: The nature of a
crossed strand-exchange between two homologous DNA molecules,”
Journal of Molecular Biology, vol. 71, no. 3, pp. 789–793,
November 1972. [Online]. Available: http://www.ncbi.nlm.nih.gov/
pubmed/4648347?dopt=abstract

[44] D. E. Goldberg and J. Richardson, “Genetic algorithms with sharing
for multimodal function optimization,” in Proceedings of the Second
International Conference on Genetic Algorithms, J. J. Grefenstette, Ed.
San Francisco: Morgan Kaufmann, 1987, pp. 148–154.

[45] N. Kohl, K. O. Stanley, R. Miikkulainen, M. Samples, and R. Sherony,
“Evolving a real-world vehicle warning system,” in Proceedings of the
Genetic and Evolutionary Computation Conference, 2006. [Online].
Available: http://nn.cs.utexas.edu/keyword?kohl:gecco06

[46] K. O. Stanley, B. D. Bryant, and R. Miikkulainen, “Real-time
neuroevolution in the NERO video game,” IEEE Transactions on
Evolutionary Computation, vol. 9, no. 6, pp. 653–668, 2005. [Online].
Available: http://nn.cs.utexas.edu/keyword?stanley:ieeetec05

[47] P. Anderson, “Complexity theory and organization science,”
Organization Science, vol. 10, no. 3, pp. 216–232, 1999. [Online].
Available: http://orgsci.journal.informs.org/content/10/3/216.abstract

[48] G. Gavetti and D. Levinthal, “Looking forward and looking backward:
Cognitive and experiential search,” Administrative Science Quarterly,
vol. 45, no. 1, pp. pp. 113–137, 2000. [Online]. Available:
http://www.jstor.org/stable/2666981

[49] R. Katila, E. Chen, and H. Piezunka, “All the right moves: How
entrepreneurial firms compete effectively,” Strategic Entrepreneurship
Journal, 2012, in press.

[50] J. G. March, “Exploration and exploitation in organizational learning,”
Organization Science, vol. 2, no. 1, pp. pp. 71–87, 1991. [Online].
Available: http://www.jstor.org/stable/2634940

[51] T. Knudsen and D. Levinthal, “Two faces of search: Alternative gen-
eration and alternative evaluation,” Organization Science, vol. 18, pp.
39–54, 2007.

[52] J. Schrum and R. Miikkulainen, “Evolving multimodal networks
for multitask games,” in Proceedings of the IEEE Conference on
Computational Intelligence and Games (CIG 2011). Seoul, South
Korea: IEEE, September 2011, pp. 102–109, (Best Paper Award).
[Online]. Available: http://nn.cs.utexas.edu/?schrum:cig11

[53] M. E. Alden, “MARLEDA: Effective distribution estimation through
markov random fields,” Ph.D. dissertation, Department of Computer
Sciences, The University of Texas at Austin, 2007, technical Report
AI07-349. [Online]. Available: http://nn.cs.utexas.edu/keyword?alden:
phd07

[54] S. G. Ficici and J. B. Pollack, “Pareto optimality in coevolutionary
learning,” in Sixth European Conference on Artificial Life, J. Kelemen,
Ed. Berlin: Springer, 2001.

[55] H. Mühlenbein and R. Höns, “The estimation of distributions and the
minimum relative entropy principle,” Evolutionary Computation, vol. 13,
no. 1, pp. 1–27, 2005.

[56] D. Carmel and S. Markovitch, “Opponent modeling in multi-agent
systems,” Adaption And Learning In Multi-Agent Systems, pp. 40–52,
1996.

http://dx.doi.org/10.1007/978-3-7091-0646-4_36
http://www.ncbi.nlm.nih.gov/pubmed/4648347?dopt=abstract
http://www.ncbi.nlm.nih.gov/pubmed/4648347?dopt=abstract
http://nn.cs.utexas.edu/keyword?kohl:gecco06
http://nn.cs.utexas.edu/keyword?stanley:ieeetec05
http://orgsci.journal.informs.org/content/10/3/216.abstract
http://www.jstor.org/stable/2666981
http://www.jstor.org/stable/2634940
http://nn.cs.utexas.edu/?schrum:cig11
http://nn.cs.utexas.edu/keyword?alden:phd07
http://nn.cs.utexas.edu/keyword?alden:phd07

	Introduction
	Background
	Organizational Theory
	Search Algorithms
	Agent-Based Modeling
	Neuro-Evolution of Augmenting Topologies (NEAT)

	Approach
	Fitness Landscape
	Agents
	Memory
	Search Methods
	Agent Strategy
	Encoding Strategy Patterns

	Experiments
	Simulation Environments
	Evolving Strategies for a Particular Environment
	Evolving General Strategies
	Real-Time Tree-Search Agents
	Visualizing Evolved Strategies

	Discussion and Future Work
	Conclusion
	Appendix
	References

