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In the last lecture, we defined several variants offictitious play.In this lecture we will discuss
some examples that reveal the behavior of fictitious play, and then recap the key results on conver-
gence. We will also prove convergence in two cases: two-player zero sum games under the PCTFP
dynamic, andN -player games of identical interest under the CTFP dynamic. We use the same
notation and terminology as Lecture 6.

1 Examples

1.1 A Coordination Game

Consider the following two player game:

Player 2
a b

A (1,1) (0,0)

Player 1
B (0,0) (1,1)

This is a coordination game with a unique fully mixed Nash equilibrium, where both players
put probability1/2 on each action. Now consider DTFP, where we start withp0

1(A) = 1−p0
1(B) =

3/4, andp0
2(a) = 1 − p0

2(b) = 1/4. Then the empirical distributions and play at each time period
evolve as follows:

t pt
1 pt

2 at
1 at

2

0 (3/4, 1/4) (1/4, 3/4) B a
1 (3/4, 5/4) (5/4, 3/4) A b
2 (7/4, 5/4) (5/4, 7/4) B a
3 (7/4, 9/4) (9/4, 7/4) A b
...

...
...

...
...

We make two observations here. First, notice that the marginal empirical distribution of each
player is converging to(1/2, 1/2) ast → ∞. This is an example where DTFP converges. However,
notice also thatthe joint empirical distribution has no weight on the diagonal entries of the payoff
matrix; i.e., the payoff to each player is zero at every time period.This is an example that highlights
the flaws inherent in standard fictitious play: when the players play pure actions at each time period,
the marginal empirical distributions can converge to a Nashequilibrium, but the actual play may
resemble nothing like a Nash equilibrium. Examples similarto this have been presented by [2] and
[5], among others.
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1.2 The Shapley Game

Shapley presented an example where DTFP does not converge, in the sense that the empirical
distributions never converge [13]. His game is as follows:

Player 2
L M R

T (0,0) (1,0) (0,1)

Player 1
M (0,1) (0,0) (1,0)

B (1,0) (0,1) (0,0)

Note that the game has a unique Nash equilibrium, where the players both uniformly randomize
over available actions. In this example, Shapley showed that if play begins with(T,M), then the
sequence of action pairs visited by DTFP is(T,M) → (T,R) → (M,R) → (M,L) → (B,L) →
(B,M) → (T,M) → · · · . (Note this is the same sequence exhibited by the standard best response
dynamics if started in(T,M).) The key observation made by Shapley is that DTFP spends an
exponentially increasing amount of time in each action pair; as a result, the empirical distributions
never converge.

1.3 Three-Player “Matching Pennies”

While compelling, Shapley’s example only establishes that there may exist initial conditions for
which DTFP diverges; by itself, it does not contradict, for example, the conjecture that Nash
equilibria may be locally stable under DTFP. (Informally, “local stability” refers to the fact that
for all initial conditions that are a sufficiently small distance from the Nash equilibrium, DTFP
converges asymptotically to the NE.)

Jordan [5] provides a counterexample to this assertion. In particular, Jordan considered a three-
player “matching pennies” game. Each player has two actions, H or T . Player 1 wants to match
the action of player 2; player 2 wants to match the action of player 3; and player 3 wants to
match theoppositeof the action of player 1. Each player receives a payoff of1 if they match
as desired, and−1 otherwise. It is straightforward to check that this game hasa unique Nash
equilibrium, where all players uniformly randomize. Jordan shows that this Nash equilibrium is
locally unstable in a strong sense: for anyε > 0, and for almost all initial empirical distributions
that are within (Euclidean) distanceε of the unique Nash equilibrium, DTFP does not converge to
the NE; instead, it enters a limit cycle asymptotically ast → ∞.
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2 Convergence Results: A Survey

In this section we survey the key convergence results on fictitious play for zero-sum games, iden-
tical interest games (i.e., games where all players have thesame payoff functions), and two-player
2×2 games. We also briefly discuss a collection of other relatedresults.

2.1 DTFP

All the earliest results on convergence of fictitious play concerned the discrete-time variant. Robin-
son proved convergence of DTFP fortwo-player zero-sum gamesin 1951 [11]; this was the
first rigorous result on convergence. More formally, she proved thatmaxs1∈∆(A1) s1Mpt

2 and
mins2∈∆(A2) pt

1Ms2 both converge to the value of the game, whereM is the matrix for the game.
Note that this does not necessarily establish that the empirical distributions converge to optimal
strategies as well; however, such a result follows from workon CTFP (see below).

Monderer and Shapley established that DTFP converges forgames of identical interestin 1996
[8]. Miyasawa proved convergence of DTFP fortwo-player 2×2 gamesin 1961 [7]. However, it
is worth noting that the two-player 2×2 case follows from earlier results: it is not difficult to show
that any two-player 2×2 game that is “nondegenerate” in an appropriate sense is best response
equivalent to either a zero-sum game, or a game of identical interest. Thus Miyasawa’s result
follows from those of Robinson and Monderer and Shapley. (“Best response equivalent” means
that two games with the same action spaces give rise to the same best response mappings; see
Problem Set 1 for more details on the 2×2 game result.)

2.2 CTFP

Harris’ 1998 paper [3] establishes convergence of CTFP fortwo-player zero-sum gamesas well as
games of identical interest; further, he shows that convergence of CTFP can be used to demonstrate
convergence of DTFP. The previous insight is used to prove that the rate of convergence of DTFP
in the zero-sum case is1/t: i.e., aftert stages, the difference betweenmaxs1∈∆(A1) s1Mpt

2 or
mins2∈∆(A2) pt

1Ms2 and the value of the game is bounded byΘ(1/t). He also establishes that the
empirical distributions converge to the set of optimal strategies, which in fact shows thatpt

1Mpt
2

approaches the value of the game as well. Combining his results establishes that CTFP converges
for two-player 2×2 gamesas well.

We note in passing that Hofbauer has written an unpublished manuscript entitled “Stability
for the Best Response Dynamic” (1995), that also contains results similar to Harris’ 1998 paper;
indeed, Harris cites the manuscript in his paper. However, it appears that Hofbauer’s manuscript
has never been published in a journal.

2.3 SFP and PCTFP

Stochastic fictitious play was introduced by Fudenberg and Kreps in 1993 [2], who also proved
convergence fortwo-player 2×2 gamesthat have a unique mixed Nash equilibrium. Their ap-
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proach involved elements of stochastic approximations, but did not explicitly employ the connec-
tion between the differential equation of PCTFP and the stochastic evolution of SFP.

The most general convergence results for both SFP and PCTFP are provided by Hofbauer and
Sandholm in 2002 [4]. They establish that PCTFP converges in both perturbed two-player zero-
sum games, as well asperturbed games of identical interest. They then use these convergence
results to establish convergence of SFP in the same settings.

Critical to the analysis carried out by Hofbauer and Sandholmwas the use of Lyapunov meth-
ods to study the PCTFP differential equation. Shamma and Arslan [12] observed that the same
basic underlying Lyapunov structure can be used to study both zero-sum games and identical inter-
est games; they use this approach to unify proofs of convergence for several cases, including 2×2
games. We note here that the structure exploited by Shamma and Arslan was initially employed
by Harris for zero-sum games and identical interest games inhis 1998 paper on CTFP [3].

2.4 Comments

We conclude with some comments on the results above.

1. A (finite) weighted potential game[9] is a finite simultaneous-move game together with
a potential function V :

∏

i ∆(Ai) → R and a vector of weightsw, with the following
property:

Πi(si, s−i) − Πi(s
′
i, s−i) = wi (V(si, s−i) − V(s′i, s−i)) ,

with weightswi > 0. Whenwi = 1 for all i, we call this aexact potential game. It
follows from this relationship that every weighted potential game is best response equivalent
to a game of identical interest, and conversely every game ofidentical interest is a potential
game with weightswi = 1 for all i. Thus all the results on convergence of fictitious play
for identical interest games also translate to results on convergence of fictitious play for
weighted potential games.

2. Some other specialized results are known. For example, SFP converges in two-player games
where one player has two actions and the other has an arbitrary finite number of actions
(called 2×n games) [1]. Fictitious play also converges for dominance solvable games [6, 10].
In subsequent lectures on supermodular games we will also discuss convergence of fictitious
play in those settings.

3 Proofs of Convergence

In this section we give two simple proofs of convergence. We first provide a proof of convergence
of PCTFP in two-player zero-sum games; the proof we give is presented by Shamma and Arslan
[12], but is very closely related to work of both Harris [3] and Hofbauer and Sandholm [4]. We
then give a proof of convergence of CTFP in games of identical interest due to Harris [3]; the proof
is analogous to convergence proofs for DTFP [8] and PCTFP [12].
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Central to our result will be the following function for each playeri:

Ui(si, s−i) = max
s′
i
∈∆(Ai)

Πi(s
′
i, s−i) − Πi(si, s−i).

The functionUi gives the maximum possible payoff improvement playeri can achieve by a uni-
lateral deviation in his own (mixed) action. We will see below in our analysis that the function
W(t) =

∑

i Ui(p
t) will play a major role in proving convergence in all cases. Observe that

Ui(s) ≥ 0 for all s. Further, ifUi(s) = 0 for all i, thens must be a Nash equilibrium.

3.1 Two-Player Zero-Sum Games and PCTFP

We consider a two-player zero-sum matrix game with payoff matrix M , where the payoffs of
both players are perturbed by i.i.d. noise. We can representthe payoffs of the two players in the
following form:

Π1(s1, s2) = s⊤1 Ms2 − V1(s1);

Π2(s1, s2) = −s⊤1 Ms2 − V2(s2).

Here the functionVi is convex, and is associated to the perturbed best response functionCi of
player i, as discussed in Lecture 6; recallCi is also called the choice probability function. In
particular, we have:

Ci(si) = arg max
s′
i
∈∆(Ai)

Πi(s
′
i, s−i).

Note that the perturbed game is not necessarily zero-sum.
PCTFP corresponds to the following pair of differential equations:

dpt
i

dt
= Ci(p

t
−i) − pt

i, i = 1, 2.

The advantage of proving convergence in this setting is thatit is a differential equation, instead of
a differential inclusion as in standard CTFP.

We use a Lyapunov function approach to prove convergence. Weconsider a functionW(t) =
U1(p

t) + U2(p
t). Explicitly, we have:

W(t) = max
s′
1
∈∆(A1)

Π1(s
′
1, p

t
2) + max

s′
2
∈∆(A2)

Π2(p
t
1, s

′
2) + V1(p

t
1) + V2(p

t
2).

We have the following theorem; the proof is inspired by the presentation of Shamma and Arslan
[12].

Theorem 1 Regardless of the initial conditionp0, the following limits hold:

lim
t→∞

(

pt
i − Ci(p

t
−i)
)

= 0, i = 1, 2.
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Thus asymptotically, each player’s empirical distribution is a best response to that of his oppo-
nent. Note that if there are multiple Nash equilibria, this does not necessarily imply convergence
of the empirical distributions; however, if the Nash equilibria are isolated, then we can conclude
that PCTFP will converge to a Nash equilibrium.

Proof. We prove the theorem by showing thatdW(t)/dt ≤ 0, with equality if and only if
pt

i ∈ Ci(p
t
−i) for i = 1, 2; i.e., we establish thatW is a Lyapunov function.

We will need the following lemma.

Lemma 2 (Envelope Theorem)LetF (x,u) be a continuously differentiable function ofx ∈ R
n,

u ∈ R
m. LetU ⊂ R

m be an open convex subset, and supposeµ∗(x) is a continuously differen-
tiable function such that:

F (x,µ∗(x)) = min
u∈U

F (x,u).

DefineH(x) = minu∈U F (x,u). Then:

∇xH(x) = ∇xF (x,µ∗(x)).

Proof. Differentiate:

∇xH(x) = ∇xF (x,µ∗(x)) + ∇uF (x,µ∗(x))∇xµ∗(x)

= ∇xF (x,µ∗(x)),

where we use the fact that∇uF (x,µ∗(x)) = 0 sinceµ∗(x) minimizesF (x,u). 2

Using the preceding lemma, we see that:

d

dt

[

max
s′
1
∈∆(A1)

Π1(s
′
1, p

t
2)

]

= ∇s2
Π1(C1(p

t
2), p

t
2)

⊤dpt
2

dt

= C1(p
t
2)

⊤M
dpt

2

dt
= C1(p

t
2)

⊤M (C2(p
t
1) − pt

2).

Similarly,
d

dt

[

max
s′
2
∈∆(A2)

Π2(p
t
1, s

′
2)

]

= −(C1(p
t
2) − pt

1)
⊤MC2(p

t
1).

Combining, we have:

dW(t)

dt
= −C1(p

t
2)

⊤Mpt
2 + (pt

1)
⊤MC2(p

t
1) + ∇V1(p

t
1)

⊤dpt
1

dt
+ ∇V2(p

t
2)

⊤dpt
2

dt
. (1)

We now observe that sinceCi is the perturbed best response function, we have:

C1(p
t
2)

⊤Mpt
2 − V1(C1(p

t
2)) ≥ (pt

1)
⊤Mpt

2 − V1(p
t
1),
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and
−(pt

1)
⊤MC2(p

t
1) − V2(C2(p

t
1)) ≥ −(pt

1)
⊤Mpt

2 − V2(p
t
2),

with equality in both cases if and only ifCi(p
t
−i) = pt

i. (The latter claim follows by uniqueness of
the perturbed best response.)

Adding and rearranging terms, we have:

−C1(p
t
2)

⊤Mpt
2 + (pt

1)
⊤MC2(p

t
1)

≤
∑

i

Vi(p
t
i) − Vi(Ci(p

t
−i))

≤ −
∑

i

∇Vi(p
t
i)

⊤(Ci(p
t
i) − pt

i)

= −
∑

i

∇Vi(p
t
i)

⊤dpt
i

dt
,

where to establish the second inequality we use the fact thatVi is convex. The preceding re-
lationship and (1) immediately imply thatdW(t)/dt ≤ 0 for all t, with equality if and only if
Ci(p

t
−i) = pt

i for both players. The theorem follows. 2

To develop some intuition, suppose that we couldignore the perturbation terms involvingVi,
but continue to assume the best response is unique. Since theresulting game is exactly a zero-sum
game, then the best response for player 1 guaranteesC1(p

t
2)

⊤Mpt
2 ≥ val(M), and similarly the

best response for player 2 guarantees(pt
1)

⊤MC2(p
t
1) ≤ val(M). If we thus consider (1), ignoring

the perturbation terms and assuming the game is exactly zero-sum yieldsdW(t)/dt ≤ 0, with
equality if and only if player 1’s payoff isval(M) and player 2’s payoff is− val M . This heuristic
argument suggests thatW is a Lyapunov function, and thatΠi(p

t
1, p

t
2) both converge to the value

of the game.
Indeed, if the argument of the preceding paragraph were valid, we can actually establish more:

if we remove the perturbation terms, the expression (1) reduces to:

dW(t)

dt
= −W(t).

This differential equation has a straightforward solution: W(t) = e−tW (−∞) (whereW (−∞) is
the initial condition). Thus CTFP should converge exponentially fast; further, using the logarithmic
time transformation, i.e., lettinĝW (t̂) = W (log t̂) (see Lecture 6), this also suggests that DTFP
converges inO(1/t) time; i.e.,Ŵ (t̂) = W (−∞)/t̂. Indeed, Harris uses exactly such an insight to
establish the convergence rate of DTFP [3].

Of course, the argument in the preceding paragraphs are heuristic: if we indeed chose to remove
the perturbation functionsVi, then the best response for each player wouldno longer be unique,
and the resulting continuous-time fictitious play is a differential inclusion rather than a differential
equation. Nevertheless, the approach we described here canbe used to prove convergence for
PCTFP, as demonstrated in the theorem.
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3.2 Games of Identical Interest and CTFP

We now consider anN -player game of identical interest, i.e., a game where all players share the
same payoff functionΠ. In this case we consider the CTFP dynamic:

dpt
i

dt
∈ BRi(p

t
−i) − pt

i.

Let {pt
i} be a CTFP process, and letst

i = pt
i + dpt

i/dt. Note thatst
i ∈ BRi(p

t
−i).

We have the following theorem, taken from Harris [3].

Theorem 3 For all playersi, and regardless of the initial conditionp0:

lim
t→∞

[

max
s′
i
∈∆(Ai)

Π(s′i,p
t
−i) − Π(pt

i,p
t
−i)

]

= 0.

The result means thatpt
i is asymptotically a (mixed) best response topt

−i.

Proof. We defineW(t) =
∑

i Ui(p
t). Observe that:

d

dt
(Π(pt)) =

d

dt

[

∑

ai∈Ai

· · ·
∑

aN∈AN

pt
1(a1) · · · p

t
N(aN)Π(a)

]

=
∑

i

∑

ai∈Ai

· · ·
∑

aN∈AN

dpt
i

dt
(ai)

(

∏

j 6=i

pt
j(aj)

)

Π(a)

=
∑

i

Π

(

dpt
i

dt
,pt

−i

)

.

The preceding explicit derivation is equivalent to asserting that when viewed as a function on
Euclidean space,Π is multilinear in its arguments—the mixed strategies of theplayers—so the
time derivative can be directly applied to the arguments. Inother words, givensi and s′i and
α, α′ ∈ R, we haveΠ(αsi + α′s′i, s−i) = αΠ(si, s−i) + α′Π(s′i, s−i).

Now observe that:

Π

(

dpt
i

dt
,pt

−i

)

= Π(st
i − pt

i,p
t
−i) = Π(st

i, p
t
i) − Π(pt) = Ui(p

t).

The second equality again follows by multilinearity ofΠ, while the last equality uses the fact that
st

i ∈ BRi(p
t
−i).

Combining our calculations, we conclude that:

d

dt
(Π(pt)) =

∑

i

Ui(p
t) = W(t).

SinceW is nonnegative everywhere, we concludeΠ(pt) is nondecreasing ast increases; thus
Π∗ = limt→∞ Π(pt) exists. SinceΠ is bounded above, we must haveΠ∗ < ∞.
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To conclude the proof, it suffices to note thatW is a Lipschitz continuous function int, so there
exists a constantK such that:

W(t) ≤ W(t + ∆) + K∆, (∗)

for all ∆ ≥ 0. From our calculation above, we conclude:

Π∗ − Π(pt) ≥ Π(pt+∆) − Π(pt) =

∫ ∆

0

W(t + τ) dτ.

Observe from (∗) that:
∫ ∆

0

W(t + τ) dτ ≥ ∆W(t) −
K∆2

2
.

If we choose∆ = W(t)/K, then we have:

Π∗ − Π(pt) ≥
W(t)2

2K
≥ 0.

Since the left hand side converges to zero, we concludeW(t) → 0 ast → ∞, as required. 2
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