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In the last lecture, we defined several variantficitious play.In this lecture we will discuss
some examples that reveal the behavior of fictitious plag,than recap the key results on conver-
gence. We will also prove convergence in two cases: twoeplagro sum games under the PCTFP
dynamic, andV-player games of identical interest under the CTFP dynamie. ugé the same
notation and terminology as Lecture 6.

1 Examples

1.1 A Coordination Game
Consider the following two player game:

Player 2
a b

A (1,1)] (0,0

Player 1
B|(0,0) (1,2)

This is a coordination game with a unique fully mixed Nashikdopium, where both players
put probabilityl /2 on each action. Now consider DTFP, where we start piittl) = 1 —pY(B) =
3/4, andpd(a) = 1 — pY(b) = 1/4. Then the empirical distributions and play at each timequeri
evolve as follows:

t i Ph aj | aj
0| (3/4, 1/4)| (U4,3/4) B | a
1| (3/4,5/4)| (5/4,3/14)| A | b
2 | (7/4,5/4)| (5/4,7/4)| B | a
3| (714, 918)| (914, 718)| A | b

We make two observations here. First, notice that the makgimpirical distribution of each
player is converging t6l /2, 1/2) ast — oo. This is an example where DTFP converges. However,
notice also thathe joint empirical distribution has no weight on the diagbeatries of the payoff
matrix; i.e., the payoff to each player is zero at every time peridus is an example that highlights
the flaws inherent in standard fictitious play: when the playpéay pure actions at each time period,
the marginal empirical distributions can converge to a Naghilibrium, but the actual play may
resemble nothing like a Nash equilibrium. Examples simdahis have been presented by [2] and
[5], among others.



1.2 The Shapley Game

Shapley presented an example where DTFP does not convargfee sense that the empirical
distributions never converge [13]. His game is as follows:

Player 2
L M R

T (0,0)| (1,0)| (0,2)

Player 1
M | (0,2)| (0,0)| (1,0)

B |(1,0)| (0,1) (0,0)

Note that the game has a unique Nash equilibrium, where #ye both uniformly randomize
over available actions. In this example, Shapley showetdftiptay begins with(7', M), then the
sequence of action pairs visited by DTFR1s M) — (T, R) — (M,R) — (M,L) — (B,L) —
(B,M)— (T,M) — ---. (Note this is the same sequence exhibited by the standatddsponse
dynamics if started if{7, M).) The key observation made by Shapley is that DTFP spends an
exponentially increasing amount of time in each action;@sra result, the empirical distributions
never converge.

1.3 Three-Player “Matching Pennies”

While compelling, Shapley’s example only establishes thate may exist initial conditions for
which DTFP diverges; by itself, it does not contradict, faample, the conjecture that Nash
equilibria may be locally stable under DTFP. (Informallipcal stability” refers to the fact that
for all initial conditions that are a sufficiently small dasice from the Nash equilibrium, DTFP
converges asymptotically to the NE.)

Jordan [5] provides a counterexample to this assertionatitiqular, Jordan considered a three-
player “matching pennies” game. Each player has two actieingr 7. Player 1 wants to match
the action of player 2; player 2 wants to match the action a@t 3; and player 3 wants to
match theoppositeof the action of player 1. Each player receives a payoft @f they match
as desired, and-1 otherwise. It is straightforward to check that this game &hasique Nash
equilibrium, where all players uniformly randomize. Jarddnows that this Nash equilibrium is
locally unstable in a strong sense: for any- 0, and for almost all initial empirical distributions
that are within (Euclidean) distaneeof the unique Nash equilibrium, DTFP does not converge to
the NE; instead, it enters a limit cycle asymptoticallyt as oo.



2 Convergence Results: A Survey

In this section we survey the key convergence results otidigs play for zero-sum games, iden-
tical interest games (i.e., games where all players havsaime payoff functions), and two-player
2x2 games. We also briefly discuss a collection of other relegsdits.

2.1 DTFP

All the earliest results on convergence of fictitious plag@erned the discrete-time variant. Robin-
son proved convergence of DTFP ftwo-player zero-sum games 1951 [11]; this was the
first rigorous result on convergence. More formally, shevpdbthatmax,, caa,) s1.Mps and
ming,ea(4,) P M s2 both converge to the value of the game, whafeis the matrix for the game.
Note that this does not necessarily establish that the &apdistributions converge to optimal
strategies as well; however, such a result follows from winlCTFP (see below).

Monderer and Shapley established that DTFP convergegmfoes of identical interegt 1996
[8]. Miyasawa proved convergence of DTFP fao-player 2«2 gamesn 1961 [7]. However, it
is worth noting that the two-player<2 case follows from earlier results: it is not difficult to sho
that any two-player 22 game that is “nondegenerate” in an appropriate sense igdmmnse
equivalent to either a zero-sum game, or a game of identitatdast. Thus Miyasawa’s result
follows from those of Robinson and Monderer and Shapley. (t'Besponse equivalent” means
that two games with the same action spaces give rise to the bast response mappings; see
Problem Set 1 for more details on the 2 game result.)

2.2 CTFP

Harris’ 1998 paper [3] establishes convergence of CTFRiorplayer zero-sum gameas well as
games of identical interedurther, he shows that convergence of CTFP can be used torcsrate
convergence of DTFP. The previous insight is used to proaettte rate of convergence of DTFP
in the zero-sum case i5/t: i.e., aftert stages, the difference betweetnx,,caa,) s1Mph or
ming,ea(4,) P M s2 and the value of the game is boundeddii /¢). He also establishes that the
empirical distributions converge to the set of optimaltemés, which in fact shows that M p},
approaches the value of the game as well. Combining his sesstiiblishes that CTFP converges
for two-player 2<2 gamesas well.

We note in passing that Hofbauer has written an unpublishaduscript entitled “Stability
for the Best Response Dynamic” (1995), that also containdtsesimilar to Harris’ 1998 paper;
indeed, Harris cites the manuscript in his paper. Howevappears that Hofbauer's manuscript
has never been published in a journal.

2.3 SFPand PCTFP

Stochastic fictitious play was introduced by Fudenberg arep&in 1993 [2], who also proved
convergence fotwo-player 2«2 gameshat have a unique mixed Nash equilibrium. Their ap-



proach involved elements of stochastic approximationsdiglinot explicitly employ the connec-
tion between the differential equation of PCTFP and the stsih evolution of SFP.

The most general convergence results for both SFP and PCERitavided by Hofbauer and
Sandholm in 2002 [4]. They establish that PCTFP convergestimgerturbed two-player zero-
sum gamesas well asperturbed games of identical interestThey then use these convergence
results to establish convergence of SFP in the same settings

Critical to the analysis carried out by Hofbauer and Sandheés the use of Lyapunov meth-
ods to study the PCTFP differential equation. Shamma andaAfdl2] observed that the same
basic underlying Lyapunov structure can be used to studymb-sum games and identical inter-
est games; they use this approach to unify proofs of conmermyfor several cases, including 2
games. We note here that the structure exploited by ShamthArafan was initially employed
by Harris for zero-sum games and identical interest gambsifhi998 paper on CTFP [3].

2.4 Comments

We conclude with some comments on the results above.

1. A (finite) weighted potential gamf®] is a finite simultaneous-move game together with
a potentialfunctionV : [, A(4;) — R and a vector of weightsv, with the following
property:

Hi(si, S_i) — Hi(S;, S_i) = Ww; (V(SZ', 3—2') — V(S/i, S_i)) s
with weightsw; > 0. Whenw; = 1 for all 7, we call this aexact potential game It
follows from this relationship that every weighted potahgame is best response equivalent
to a game of identical interest, and conversely every gandeotical interest is a potential
game with weightsy; = 1 for all i. Thus all the results on convergence of fictitious play
for identical interest games also translate to results awargence of fictitious play for
weighted potential games.

2. Some other specialized results are known. For exampk c8Rverges in two-player games
where one player has two actions and the other has an aybitnite number of actions
(called 2<n games) [1]. Fictitious play also converges for dominandesdde games [6, 10].
In subsequent lectures on supermodular games we will atsois convergence of fictitious
play in those settings.

3 Proofs of Convergence

In this section we give two simple proofs of convergence. \i¢ firovide a proof of convergence
of PCTFP in two-player zero-sum games; the proof we give isgred by Shamma and Arslan
[12], but is very closely related to work of both Harris [3]daRlofbauer and Sandholm [4]. We
then give a proof of convergence of CTFP in games of identntatést due to Harris [3]; the proof
is analogous to convergence proofs for DTFP [8] and PCTFR [12]



Central to our result will be the following function for eaclayper::

Ui iy9—i) — Hz ,'a —1 _Hz‘ 1y O—1).

(si,8-4) S (55, 8-1) — Ii(si, 8-4)

The functionU; gives the maximum possible payoff improvement playean achieve by a uni-
lateral deviation in his own (mixed) action. We will see velm our analysis that the function
W(t) = >, Ui(p") will play a major role in proving convergence in all cases. s@fe that
Ui(s) > 0 for all s. Further, ifU;(s) = 0 for all 7, thens must be a Nash equilibrium.

3.1 Two-Player Zero-Sum Games and PCTFP

We consider a two-player zero-sum matrix game with payoffrima\Z, where the payoffs of
both players are perturbed by i.i.d. noise. We can reprdkenpayoffs of the two players in the
following form:

Iy (s1, 82) = s{ Misy — Vi(s1);
HQ(Sl, 82) = _SIMSQ — ‘/2(82).

Here the functionV; is convex, and is associated to the perturbed best respansgoin C; of
playeri, as discussed in Lecture 6; recél] is also called the choice probability function. In
particular, we have:
Ci(si) = 11 (s}, 5-4)-
(1) arg max (3, 5-3)
Note that the perturbed game is not necessarily zero-sum.
PCTFP corresponds to the following pair of differential etipres:

dp!
dt

The advantage of proving convergence in this setting isitligg differential equation, instead of
a differential inclusion as in standard CTFP.

We use a Lyapunov function approach to prove convergencecongder a functionV(t) =
Ui(p') + Usx(p'). Explicitly, we have:

W(t) = max IT, (s}, ) + e I (ph, sh) + Va(ph) + Va(ph).

We have the following theorem; the proof is inspired by thespntation of Shamma and Arslan
[12].

Theorem 1 Regardless of the initial conditign’, the following limits hold:

. t + o .
tlgglo (pi - Ci(pfi)) =0, 1=1,2



Thus asymptotically, each player’s empirical distribatie a best response to that of his oppo-
nent. Note that if there are multiple Nash equilibria, thies not necessarily imply convergence
of the empirical distributions; however, if the Nash eduil are isolated, then we can conclude
that PCTFP will converge to a Nash equilibrium.

Proof. We prove the theorem by showing th&t/(¢)/dt < 0, with equality if and only if
pt e Ci(pt,;) fori =1,2; i.e., we establish that is a Lyapunov function.
We will need the foIIowmg lemma.

Lemma 2 (Envelope Theorem)Let F'(x, u) be a continuously differentiable functionofe R”,
u € R™. LetU C R™ be an open convex subset, and suppeSer) is a continuously differen-
tiable function such that:

F(x,pu*(x)) = %161{[1 F(x,u).

DefineH (x) = min,cy F(x,w). Then:
VoH(x) = V. F(z, p*(x)).
Proof. Differentiate:

VeH(x) = Vo F(x, p' () + VuF (z, p'(2)) Vo™ (x)
=V lF(z, p*(z)),

where we use the fact th&t, F'(x, p*(x)) = 0 sincep*(x) minimizesF(x, u). O

Using the preceding lemma, we see that:

d dp;
7 L lérlAa}jl)Hl(81,p2):| V32H1(01<p2) pQ)T dt2

dpt
= Cl(Pté)TMd_tz

= C1(ph) " M (Ca(p}) — ph).

Similarly,
d
pr LQIEHA%)Ha(pl,SQ)] = —(C1(py) — 1) " MCy(py).
Combining, we have:
dW(t d dph,
VO )™M+ 04T MOs ) + VOB v T

We now observe that singg is the perturbed best response function, we have:

Ci(ph) " Mph — Vi(Ci(ph)) = (p}) " Mph — Vi(p}),



and
—(p}) "M Cy(p}) — Va(Ca(ph)) = —(p}) T Mph — Va(ph),

with equality in both cases if and onlyd;(p" ;) = pt. (The latter claim follows by uniqueness of
the perturbed best response.)
Adding and rearranging terms, we have:

—C(ph) " Mph + (ph) T MCy(ph)
< Z Vi(pl) — Vi(Ci(pL,))

< — Z VVi(ph) T (Ci(ph) — ph)

e

dt

where to establish the second inequality we use the fact\thet convex. The preceding re-
lationship and (1) immediately imply tha®V(t)/dt < 0 for all ¢, with equality if and only if
Ci(p',) = p! for both players. The theorem follows. O

To develop some intuition, suppose that we cdglubre the perturbation terms involving;,
but continue to assume the best response is unique. Sinoestiléng game is exactly a zero-sum
game, then the best response for player 1 guaradtggé) " Mph, > val(M), and similarly the
best response for player 2 guarantgés " M C,(p!) < val(M). If we thus consider (1), ignoring
the perturbation terms and assuming the game is exactlyszenoyieldsdV(t)/dt < 0, with
equality if and only if player 1's payoff isal(M ) and player 2's payoff is- val M. This heuristic
argument suggests they is a Lyapunov function, and that;(p!, p) both converge to the value
of the game.

Indeed, if the argument of the preceding paragraph werd,waé can actually establish more:
if we remove the perturbation terms, the expression (1)cesito:

dW(t)
o W(t).
This differential equation has a straightforward solutivVi(t) = e 'WW(—o0) (WhereW (—oo) is
the initial condition). Thus CTFP should converge exporaiytiast; further, using the logarithmic
time transformation, i.e., letting/({) = W (logt) (see Lecture 6), this also suggests that DTFP
converges irO(1/t) time; i.e.,W (f) = W(—c0) /. Indeed, Harris uses exactly such an insight to
establish the convergence rate of DTFP [3].

Of course, the argument in the preceding paragraphs arstieuf we indeed chose to remove
the perturbation functiong;, then the best response for each player wauddonger be unique
and the resulting continuous-time fictitious play is a d#éf&ial inclusion rather than a differential
equation. Nevertheless, the approach we described herbecased to prove convergence for
PCTFP, as demonstrated in the theorem.



3.2 Games of Identical Interest and CTFP

We now consider atV-player game of identical interest, i.e., a game where ayegis share the
same payoff functiol. In this case we consider the CTFP dynamic:

dpl
dt

Let {p!} be a CTFP process, and t= p! + dp’/dt. Note thats! € BR;(p",).
We have the following theorem, taken from Harris [3].

€ BRi(p;) — p;.

Theorem 3 For all playersi, and regardless of the initial conditigpf:

tirgo L 226}}2) ( Z,P_l) (pz7p—7,):|

The result means thaf is asymptotically a (mixed) best responsetq.

Proof. We defineV(t) = >, U;(p"). Observe that:

4 ey -
%( _d_lz > pila) an)1l(a)

a;EA; aNEAN
Yy Y (Hp;w)na
1 a;€A; aNEAN e

The preceding explicit derivation is equivalent to assgrtihat when viewed as a function on
Euclidean spacd] is multilinear in its arguments—the mixed strategies of pheyers—so the
time derivative can be directly applied to the arguments.otimer words, givers; and s; and
a,a’ € R, we havell(as; + o/s}, s_;) = all(s;, s—;) + «I1(s}, s_;).

Now observe that:

dnt
(51 ) = st ) = Tt 50— 116) = Ui,

The second equality again follows by multilinearityldf while the last equality uses the fact that

Combining our calculations, we conclude that:

= Z Ui(p') =

Since)V is nonnegative everywhere, we concludép’) is nondecreasing asincreases; thus
IT* = lim,_, I1(p") exists. Sincédl is bounded above, we must haié < co.

8



To conclude the proof, it suffices to note thatis a Lipschitz continuous function in so there
exists a constank” such that:
W(t) <WI(t+A) + KA, (%)

for all A > 0. From our calculation above, we conclude:

A
IT* — II(p') > II(p') — (p') = /0 W(t+ 1) dr.

Observe from ) that:
A KA2
/ W(t+7)dr > AW(t) — 5
0
If we chooseA = W(t)/ K, then we have:
2

Since the left hand side converges to zero, we concdde — 0 ast — oo, as required. O
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