MS&E 246: Lecture 9 Sequential bargaining

Ramesh Johari

Nash bargaining solution

Recall Nash's approach to bargaining:

The planner is *given* the set of achievable payoffs and status quo point.

Implicitly:

The *process* of bargaining does not matter.

Dynamics of bargaining

In this lecture:

We use a dynamic game of perfect information to model the *process* of bargaining.

An interference model

Recall the interference model:

- Two devices
- Device 1 given channel a fraction q of the time
- For efficiency: When device *n* has control, it transmits at full power *P*

An interference model

- When timesharing is used, the set of Pareto efficient payoffs becomes:
 { (Π₁, Π₂) : Π₁ = q R₁, Π₂ = (1 - q) R₂ }
- We now assume the devices bargain through a sequence of *alternating offers*.

Alternating offers

- At time 0:
 - Stage 0A: Device 1 proposes a choice of q (denoted q₁)
 - Stage 0B: Device 2 decides to *accept* or *reject* device 1's offer

Two period model

Assumption 1:

If device 2 *rejects* at stage 0B, then predetermined choice $Q \in [0, 1]$ is implemented at time 1

Discounting

Assumption 2:

Devices care about delay: Any payoff received by device i at time k is *discounted* by δ_i^{k} .

 $0 < \delta_i < 1$: *discount factor* of device *i*

Game tree

Game tree

- This is a *dynamic game of perfect information.*
- We solve it using backward induction.

1. Given q_1 , at Stage OB:

• Device 2 *rejects* if: $\delta_2 (1 - Q) > (1 - q_1)$

1. Given q_1 , at Stage OB:

- Device 2 *rejects* $(s_2(q_1) = R)$ if: $q_1 > 1 - \delta_2 (1 - Q)$
- Device 2 *accepts* $(s_2(q_1) = A)$ if: $q_1 < 1 - \delta_2 (1 - Q)$
- Device 2 is *indifferent* $(s_2(q_1) \in \{A, R\})$ if $q_1 = 1 - \delta_2 (1 - Q)$

- 2. At Stage 0A:
 - Device 1 maximizes $\Pi_1(q_1, s_2(q_1))$ over offers ($0 \le q_1 \le 1$)
 - *Claim:* Maximum value of Π_1 is

(1 - δ_2 (1 - Q)) R_1

- 2. At Stage 0A:
 - *Claim:* Maximum value of Π_1 is $\Pi_1^{MAX} = (1 - \delta_2 (1 - Q)) R_1$
 - Proof:

(a) Maximum is achievable:

If q_1 increases to $1 - \delta_2(1 - Q)$, then Π_1 increases to Π_1^{MAX}

- 2. At Stage 0A:
 - *Claim:* Maximum value of Π_1 is $\Pi_1^{MAX} = (1 - \delta_2 (1 - Q)) R_1$
 - *Proof:* (b) If $q_1 > 1 - \delta_2(1 - Q)$, then $\Pi_1 < \Pi_1^{MAX}$:

Device 2 rejects \Rightarrow $\Pi_1 = \delta_1 Q R_1$

- 2. At Stage 0A:
 - *Claim:* Maximum value of Π_1 is $\Pi_1^{MAX} = (1 - \delta_2 (1 - Q)) R_1$
 - *Proof:* (b) If $q_1 > 1 - \delta_2(1 - Q)$, then $\Pi_1 < \Pi_1^{MAX}$:

But note that: $\delta_1 Q + \delta_2 (1 - Q) < 1$

- 2. At Stage 0A:
 - *Claim:* Maximum value of Π_1 is $\Pi_1^{MAX} = (1 - \delta_2 (1 - Q)) R_1$
 - *Proof:* (b) If $q_1 > 1 - \delta_2(1 - Q)$, then $\Pi_1 < \Pi_1^{MAX}$:

But note that: $\delta_1 Q < 1 - \delta_2 (1 - Q)$

- 2. At Stage 0A:
 - *Claim:* Maximum value of Π_1 is $\Pi_1^{MAX} = (1 - \delta_2 (1 - Q)) R_1$
 - *Proof:* (b) If $q_1 > 1 - \delta_2(1 - Q)$, then $\Pi_1 < \Pi_1^{MAX}$:

So $\delta_1 Q R_1 < (1 - \delta_2 (1 - Q)) R_1$

- 2. At Stage 0A:
 - Best responses for device 1 : All choices of q₁ that achieve Π1^{MAX} The only possibility:

$$q_1^* = 1 - \delta_2 (1 - Q)$$

- 2. At Stage 0A:
 - If s₂(q₁*) = reject,
 no best response exists for device 1!

• If $s_2(q_1^*)$ = accept, best response for device 1 is $q_1 = q_1^*$

Unique SPNE

What is the unique SPNE?

• Must give *strategies* for both players!

Unique SPNE

What is the unique SPNE?

- Device 1: At Stage 0A, offer $q_1 = q_1^*$
- Device 2:

At Stage OB, accept if $q_1 \le q_1^*$, reject if $q_1 > q_1^*$

Payoffs at unique SPNE

- So the offer of device 1 is accepted immediately by device 2.
- Device 1 gets: $\Pi_1 = (1 \delta_2(1 Q)) R_1$
- Device 2 gets: $\Pi_2 = \delta_2(1 q_0) R_2$

Infinite horizon

More realistic model:

Devices alternate offers indefinitely.

For simplicity: assume $\delta_1 = \delta_2 = \delta$

Finite horizon

Infinite horizon

Infinite horizon: formal model

- Device 1 offers q_{1k} at stage kA, for k even
- Device 2 offers q_{2k} at stage kA, for k odd
- Device 2 accepts/rejects stage kA offer at stage kB, for k even
- Device 1 accepts/rejects stage kA offer at stage kB, for k odd

Infinite horizon: formal model

• Payoffs:

 $\Pi_1 = \Pi_2 = 0$ if no offer ever accepted (similar to status quo in NBS)

Infinite horizon: formal model

• Payoffs:

If offer made at stage kA by player i accepted at stage kB :

$$\Pi_1 = \delta^k \ q_{ik} \ R_1$$

$$\Pi_2 = \delta^k \ (1 - q_{ik} \) \ R_2$$

Infinite horizon

- Can't use backward induction!
- Use *stationarity:*

Subgame rooted at 1A is the same as the original game, with roles of 1 and 2 reversed.

SPNE

Define V and v:

VR_1 = highest time 0 payoff to device 1 among *all* SPNE

 $v R_1$ = lowest time 0 payoff to device 1 among *all* SPNE

SPNE

Then if device 2 rejects at OB:

VR₂= highest time 1 payoff to device 2 among *all* SPNE

 $v R_2$ = lowest time 1 payoff to device 2 among *all* SPNE

SPNE: Two inequalities

• $v R_1 \ge (1 - \delta V) R_1$

At Stage 0B: Device 2 will accept any $q_{10} < 1 - \delta V$

So at Stage 0A: Device 1 must earn at least (1 - δ V) R_1

SPNE: Two inequalities

• $VR_1 \leq (1 - \delta v) R_1$

If offer q_{10} is *accepted* at stage 0B, device 2 must get a timeshare of at least δv

$$\Rightarrow q_{10} \le 1 - \delta v$$

SPNE: Two inequalities

• $VR_1 \leq (1 - \delta v) R_1$

If offer q_{10} is *rejected* at stage 0B, device 1 earns at most δ (1 - v) R_1 since device 2 earns at least $\delta v R_2$ $\Rightarrow \Pi_1 \leq \delta$ (1 - v) $R_1 \leq$ (1 - δv) R_1

Combining inequalities

- $v \leq V$
- $v \ge 1 \delta V$
- $V \leq 1 \delta v$

Combining inequalities

- $v \leq V$
- $v + \delta V \ge 1$
- $V + \delta v \leq 1$

So: $V + \delta v \le v + \delta V$ $\Rightarrow (1 - \delta) V \le (1 - \delta) v$ $\Rightarrow V = v$

Unique SPNE

• So
$$V = 1 - \delta V \Rightarrow$$

$$V = \frac{1}{1 + \delta}$$

• SPNE strategies for device 1: At Stage kA, k even: Offer $q_{1k} = 1 - \delta V$ At Stage kB, k odd: Accept if $q_{2k} \ge \delta V$

Unique SPNE

• So
$$V = 1 - \delta V \Rightarrow$$

$$V = \frac{1}{1 + 1}$$

• SPNE strategies for device 2: At Stage kA, k odd: Offer $q_{2k} = \delta V$ At Stage kB, k even: Accept if $q_{1k} \leq 1 - \delta V$

 δ

Unique SPNE: Payoffs

Stage 0A offer by device 1 is accepted in Stage 0B by device 2.

$$\Pi_1^{\text{SPNE}} = \frac{R_1}{1+\delta}, \quad \Pi_2^{\text{SPNE}} = \frac{\delta R_2}{1+\delta}$$

Infinite horizon: Discussion

- Outcome is *efficient:* No "lost utility" due to discounting
- *Stationary* SPNE strategies: Actions do not depend on time k
- First mover advantage: $\Pi_1^{\text{SPNE}} > \Pi_2^{\text{SPNE}}$

Shortening time periods

Shorten each time step to length $t < 1 \dots$... Same as changing discount factor to δ^t

$$\Pi_1^{\text{SPNE}} = \frac{R_1}{1+\delta^t}, \quad \Pi_2^{\text{SPNE}} = \frac{\delta^t R_2}{1+\delta^t}$$

As $t \to 0$, note that $\prod_i^{\text{SPNE}} \to R_i/2$. Nash bargaining solution!

In general

If $\delta_1 \neq \delta_2$:

Find SPNE using two period model: Note that Q must be SPNE payoff when device 2 offers first

Can show (for an appropriate limit) that weighted NBS obtained as $t \rightarrow 0$: More patient player weighted higher

Summary

- Alternating offers: finite horizon
 Backward induction solution
- Alternating offers: infinite horizon
 Unique SPNE

Relation to Nash bargaining solution