MS\&E 246: Lecture 9
 Sequential bargaining

Ramesh J ohari

Nash bargaining solution

Recall Nash's approach to bargaining:

The planner is given the set of achievable payoffs and status quo point.

Implicitly:
The process of bargaining does not matter.

Dynamics of bargaining

In this lecture:

We use a dynamic game of perfect information to model the process of bargaining.

An interference model

Recall the interference model:

- Two devices
- Device 1 given channel a fraction q of the time
- For efficiency:

When device n has control, it transmits at full power P

An interference model

- When timesharing is used, the set of Pareto efficient payoffs becomes:
$\left\{\left(\Pi_{1}, \Pi_{2}\right): \Pi_{1}=q R_{1}, \Pi_{2}=(1-q) R_{2}\right\}$
- We now assume the devices bargain through a sequence of alternating offers.

Alternating offers

- At time 0 :
- Stage OA:

Device 1 proposes a choice of q
(denoted q_{1})

- Stage OB:

Device 2 decides to accept or reject device 1's offer

Two period model

Assumption 1:
If device 2 rejects at stage $0 B$,
then predetermined choice $Q \in[0,1]$ is implemented at time 1

Discounting

Assumption 2:
Devices care about delay:
Any payoff received by device i at time k is discounted by $\delta_{i}{ }^{k}$.
$0<\delta_{i}<1$: discount factor of device i

Game tree

Game tree

- This is a dynamic game of perfect information.
- We solve it using backward induction.

Backward induction

1. Given q_{1}, at Stage OB :

- Device 2 rejects if:

$$
\delta_{2}(1-Q) \quad>\left(1-q_{1}\right)
$$

Backward induction

1. Given q_{1}, at Stage OB :

- Device 2 rejects $\left(s_{2}\left(q_{1}\right)=\mathrm{R}\right)$ if:

$$
q_{1}>1-\delta_{2}(1-Q)
$$

- Device 2 accepts $\left(s_{2}\left(q_{1}\right)=\mathrm{A}\right)$ if:

$$
q_{1}<1-\delta_{2}(1-Q)
$$

- Device 2 is indifferent

$$
\begin{gathered}
\left(s_{2}\left(q_{1}\right) \in\{\mathrm{A}, \mathrm{R}\}\right) \text { if } \\
q_{1}=1-\delta_{2}(1-Q)
\end{gathered}
$$

Backward induction

2. At Stage OA:

- Device 1 maximizes $\Pi_{1}\left(q_{1}, s_{2}\left(q_{1}\right)\right)$ over offers ($0 \leq q_{1} \leq 1$)
- Claim: Maximum value of Π_{1} is

$$
\left(1-\delta_{2}(1-Q)\right) R_{1}
$$

Backward induction

2. At Stage OA:

- Claim: Maximum value of Π_{1} is

$$
\Pi_{1}^{\operatorname{MAX}}=\left(1-\delta_{2}(1-Q)\right) R_{1}
$$

- Proof:
(a) Maximum is achievable:

If $\quad q_{1}$ increases to $1-\delta_{2}(1-Q)$,
then Π_{1} increases to $\Pi_{1}^{\text {max }}$

Backward induction

2. At Stage OA:

- Claim: Maximum value of Π_{1} is
$\Pi_{1}^{\text {MAX }}=\left(1-\delta_{2}(1-Q)\right) R_{1}$
- Proof:
(b) If $q_{1}>1-\delta_{2}(1-Q)$, then $\Pi_{1}<\Pi_{1}^{\text {mAX: }}$

Device 2 rejects $\Rightarrow \Pi_{1}=\delta_{1} Q R_{1}$

Backward induction

2. At Stage OA:

- Claim: Maximum value of Π_{1} is
$\Pi_{1}^{\text {MAX }}=\left(1-\delta_{2}(1-Q)\right) R_{1}$
- Proof:
(b) If $q_{1}>1-\delta_{2}(1-Q)$, then $\Pi_{1}<\Pi_{1}^{\text {MAX: }}$

But note that: $\quad \delta_{1} Q+\delta_{2}(1-Q)<1$

Backward induction

2. At Stage OA:

- Claim: Maximum value of Π_{1} is
$\Pi_{1}^{\text {MAX }}=\left(1-\delta_{2}(1-Q)\right) R_{1}$
- Proof:
(b) If $q_{1}>1-\delta_{2}(1-Q)$, then $\Pi_{1}<\Pi_{1}^{\text {MAX: }}$

But note that: $\quad \delta_{1} Q<1-\delta_{2}(1-Q)$

Backward induction

2. At Stage OA:

- Claim: Maximum value of Π_{1} is

$$
\Pi_{1}^{\operatorname{MAX}}=\left(1-\delta_{2}(1-Q)\right) R_{1}
$$

- Proof:
(b) If $q_{1}>1-\delta_{2}(1-Q)$, then $\Pi_{1}<\Pi_{1}^{\text {MAX }}$:

So $\delta_{1} Q R_{1}<\left(1-\delta_{2}(1-Q)\right) R_{1}$

Backward induction

2. At Stage OA:

- Best responses for device 1 :

All choices of q_{1} that achieve $\Pi_{1}^{\text {MAX }}$
The only possibility:

$$
q_{1}{ }^{*}=1-\delta_{2}(1-Q)
$$

Backward induction

2. At Stage OA:

- If $s_{2}\left(q_{1}{ }^{*}\right)=$ reject,
no best response exists for device 1 !
- If $s_{2}\left(q_{1}^{*}\right)=$ accept, best response for device 1 is $q_{1}=q_{1}{ }^{*}$

Unique SPNE

What is the unique SPNE?

- Must give strategies for both players!

Unique SPNE

What is the unique SPNE?

- Device 1:

At Stage OA , offer $q_{1}=q_{1}{ }^{*}$

- Device 2:

At Stage OB,
accept if $q_{1} \leq q_{1}{ }^{*}$, reject if $q_{1}>q_{1}{ }^{*}$

Payoffs at unique SPNE

- So the offer of device 1 is accepted immediately by device 2 .
- Device 1 gets: $\quad \Pi_{1}=\left(1-\delta_{2}(1-Q)\right) R_{1}$
- Device 2 gets: $\Pi_{2}=\delta_{2}\left(1-q_{0}\right) R_{2}$

Infinite horizon

More realistic model:

Devices alternate offers indefinitely.

For simplicity: assume $\delta_{1}=\delta_{2}=\delta$

Finite horizon

Infinite horizon

Infinite horizon: formal model

- Device 1 offers $q_{1 k}$ at stage $k \mathrm{~A}$, for k even
- Device 2 offers $q_{2 k}$ at stage $k \mathrm{~A}$, for k odd
- Device 2 accepts/ rej ects stage $k \mathrm{~A}$ offer at stage $k \mathrm{~B}$, for k even
- Device 1 accepts/ rej ects stage k A offer at stage $k \mathrm{~B}$, for k odd

Infinite horizon: formal model

- Payoffs:
$\Pi_{1}=\Pi_{2}=0$ if no offer ever accepted (similar to status quo in NBS)

Infinite horizon: formal model

- Payoffs:

If offer made at stage $k \mathrm{~A}$ by player i accepted at stage k B :

$$
\begin{aligned}
& \Pi_{1}=\delta^{k} q_{i k} R_{1} \\
& \Pi_{2}=\delta^{k}\left(1-q_{i k}\right) R_{2}
\end{aligned}
$$

Infinite horizon

- Can't use backward induction!
- Use stationarity:

Subgame rooted at 1A is the same as the original game, with roles of 1 and 2 reversed.

SPNE

Define V and v :
$V R_{1}=$ highest time 0 payoff to device 1 among all SPNE
$v R_{1}=$ lowest time 0 payoff to device 1 among all SPNE

SPNE

Then if device 2 rejects at OB:
$V R_{2}=$ highest time 1 payoff to device 2 among all SPNE
$v R_{2}=$ lowest time 1 payoff to device 2 among all SPNE

SPNE: Two inequalities

- $v R_{1} \geq(1-\delta V) R_{1}$

At Stage OB:
Device 2 will accept any $q_{10}<1-\delta V$

So at Stage 0A:
Device 1 must earn at least $(1-\delta V) R_{1}$

SPNE: Two inequalities

- $V R_{1} \leq(1-\delta v) R_{1}$

If offer q_{10} is accepted at stage OB, device 2 must get a timeshare of at least δv
$\Rightarrow q_{10} \leq 1-\delta v$

SPNE: Two inequalities

- $V R_{1} \leq(1-\delta v) R_{1}$

If offer q_{10} is rej ected at stage OB, device 1 earns at most $\delta(1-v) R_{1}$ since device 2 earns at least $\delta v R_{2}$

$$
\Rightarrow \Pi_{1} \leq \delta(1-v) R_{1} \leq(1-\delta v) R_{1}
$$

Combining inequalities

- $v \leq V$
- $v \geq 1-\delta V$
- $V \leq 1-\delta v$

Combining inequalities

- $v \leq V$
- $v+\delta V \geq 1$
- $V+\delta v \leq 1$

So:

$$
\begin{array}{ccc}
& & V+\delta v \leq v+\delta V \\
\Rightarrow & (1-\delta) V \leq(1-\delta) v \\
\Rightarrow & V=v
\end{array}
$$

Unique SPNE

- So $V=1-\delta V \Rightarrow$

$$
V=\frac{1}{1+\delta}
$$

- SPNE strategies for device 1:

At Stage $k \mathrm{~A}, k$ even: Offer $q_{1 k}=1-\delta V$
At Stage $k \mathrm{~B}, k$ odd: Accept if $q_{2 k} \geq \delta V$

Unique SPNE

- So $V=1-\delta V \Rightarrow$

$$
V=\frac{1}{1+\delta}
$$

- SPNE strategies for device 2:

At Stage $k \mathrm{~A}, k$ odd:
Offer $q_{2 k}=\delta V$
At Stage k B , k even:
Accept if $q_{1 k} \leq 1-\delta V$

Unique SPNE: Payoffs

Stage OA offer by device 1 is accepted in Stage OB by device 2 .

$$
\Pi_{1}^{\mathrm{SPNE}}=\frac{R_{1}}{1+\delta}, \quad \Pi_{2}^{\mathrm{SPNE}}=\frac{\delta R_{2}}{1+\delta}
$$

Infinite horizon: Discussion

- Outcome is efficient:

No "lost utility" due to discounting

- Stationary SPNE strategies:

Actions do not depend on time k

- First mover advantage:
$\Pi_{1}{ }^{\text {SPNE }}>\Pi_{2}^{\text {SPNE }}$

Shortening time periods

Shorten each time step to length $t<1 \ldots$
... Same as changing discount factor to δ^{t}

$$
\Pi_{1}^{\mathrm{SPNE}}=\frac{R_{1}}{1+\delta^{t}}, \quad \Pi_{2}^{\mathrm{SPNE}}=\frac{\delta^{t} R_{2}}{1+\delta^{t}}
$$

As $t \rightarrow 0$, note that $\Pi_{i}{ }^{\text {SPNE }} \rightarrow R_{i} / 2$. Nash bargaining solution!

In general

If $\delta_{1} \neq \delta_{2}$:
Find SPNE using two period model: Note that Q must be SPNE payoff when device 2 offers first

Can show (for an appropriate limit) that weighted NBS obtained as $t \rightarrow 0$:
More patient player weighted higher

Summary

- Alternating offers: finite horizon Backward induction solution
- Alternating offers: infinite horizon Unique SPNE
Relation to Nash bargaining solution

