MS&E 246: Lecture 5 Efficiency and fairness

Ramesh Johari

In this lecture:

We will use some of the insights of static game analysis to understand *efficiency and fairness.*

Basic setup

- N players
- S_n : strategy space of player n
- Z : space of outcomes
- $z(s_1, ..., s_N)$: outcome realized when $(s_1, ..., s_N)$ is played
- $\Pi_n(z)$: payoff to player n when outcome is z

(Pareto) Efficiency

An outcome z' Pareto dominates z if: $\Pi_n(z') \ge \Pi_n(z)$ for all n, and the inequality is strict for at least one n.

An outcome z is *Pareto efficient* if it is not Pareto dominated by any other $z' \in X$.

⇒ Can't make one player better off without making another worse off.

Recall the Prisoner's dilemma:

Player 1

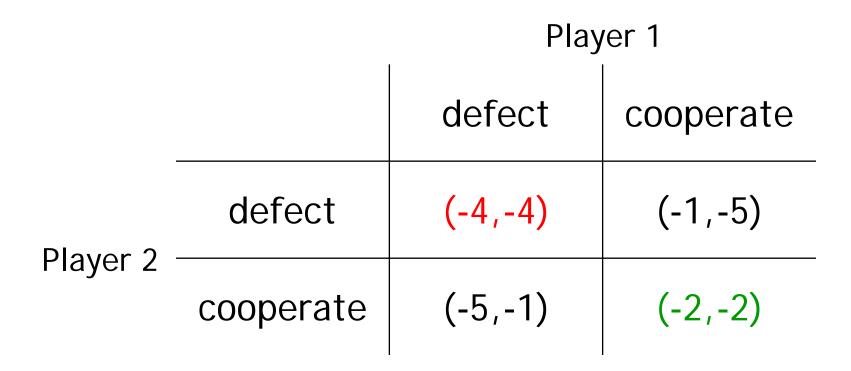
		defect	cooperate
Player 2	defect	(-4,-4)	(-1,-5)
	cooperate	(-5,-1)	(-2,-2)

Recall the Prisoner's dilemma:

Player 1

		defect	cooperate
Player 2	defect	(-4,-4)	(-1,-5)
	cooperate	(-5,-1)	(-2,-2)

Unique dominant strategy eq.: (D, D).



But (C, C) Pareto dominates (D, D).

• Moral:

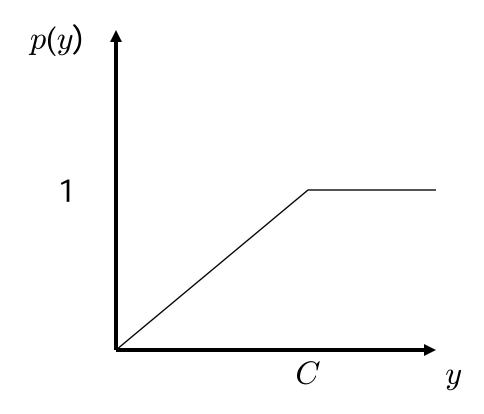
Even when every player has a strict dominant strategy, the resulting equilibrium may be *inefficient*.

Resource sharing

- N users want to send data across a shared communication medium
- x_n : sending rate of user n (pkts/sec)
- p(y) : probability a packet is lost when total sending rate is y
- $\Pi_n(\mathbf{x}) = net throughput of user n$ = $x_n (1 - p(\sum_i x_i))$

Resource sharing

• Suppose: $p(y) = \min(y/C, 1)$



Resource sharing

- Suppose: $p(y) = \min(y/C, 1)$
- Given x: Define $Y = \sum_i x_i$ and $Y_{-n} = \sum_{i \neq n} x_i$
- Thus, given \mathbf{x}_{-n} , $\Pi_n(x_n, \mathbf{x}_{-n}) = x_n \left(1 - \frac{x_n + Y_{-n}}{C}\right)$

if $x_n + Y_{-n} \leq C$, and zero otherwise

Pure strategy Nash equilibrium

- We only search for NE s.t. $\sum_i x_i \leq C$ (Why?)
- In this region, first order conditions are:

$$1 - Y_{-n}/C - 2x_n/C = 0$$
, for all n

Pure strategy Nash equilibrium

- We only search for NE s.t. $\sum_i x_i \leq C$ (Why?)
- In this region, first order conditions are:

1 - $Y/C = x_n/C$, for all n

- If we sum over n and solve for Y, we find: $Y^{NE} = NC / (N + 1)$
- So: $x_n^{\text{NE}} = C / (N + 1)$, and $\Pi_n(\mathbf{x}^{\text{NE}}) = C / (N + 1)^2$

Maximum throughput

- Note that total throughput = $\sum_{n} \Pi_{n}(\mathbf{x}) = Y(1 - p(Y)) = Y(1 - Y/C)$
- This is maximized at $Y^{MAX} = C$ / 2
- Define $x_n^{\rm MAX}$ = $Y^{\rm MAX}$ /N = C / 2N
- Then (if *N* > 1):

 $\Pi_n(\mathbf{x}^{\mathsf{MAX}}) = C / 4N > C / (N + 1)^2 = \Pi_n(\mathbf{x}^{\mathsf{NE}})$

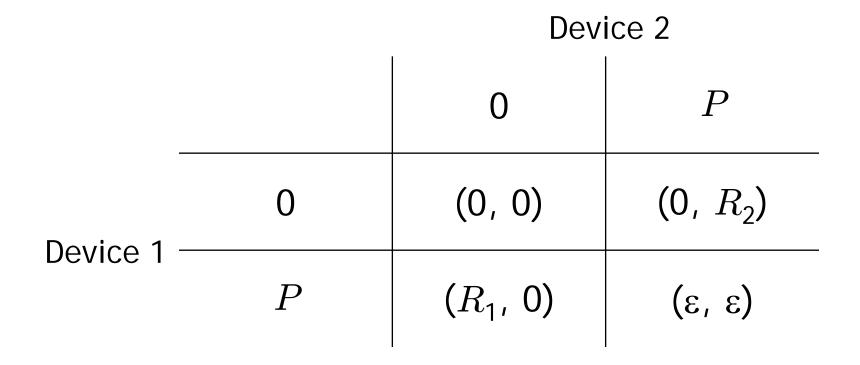
So: \mathbf{x}^{NE} is not efficient.

Resource sharing: summary

- At NE, users' rates are too high. Why?
- When user n maximizes Π_n, he ignores reduction in throughput he causes for other players (the *negative externality*)
- AKA: Tragedy of the Commons
- If externality is *positive*, then NE strategies are *too low*

- N = 2 wireless devices want to send data
- Strategy = transmit power
 S₁ = S₂ = { 0, P }
- Each device sees the other's transmission as *interference*

Payoff matrix ($0 < \varepsilon < < R_2 < R_1$):



- (*P*, *P*) is unique strict dominant strategy equilibrium (and hence unique NE)
- Note that (P, P) is not Pareto dominated by any pure strategy pair
- But...the mixed strategy pair $(\mathbf{p}_1, \mathbf{p}_2)$ with $p_1(0) = p_2(0) = p_1(P) = p_2(P) = 1/2$ Pareto dominates (P, P) if $R_n >> \varepsilon$

(Payoffs: $\Pi_n(\mathbf{p}_1, \mathbf{p}_2) = R_n/4 + \epsilon/4$)

- How can coordination improve throughput?
- Idea:

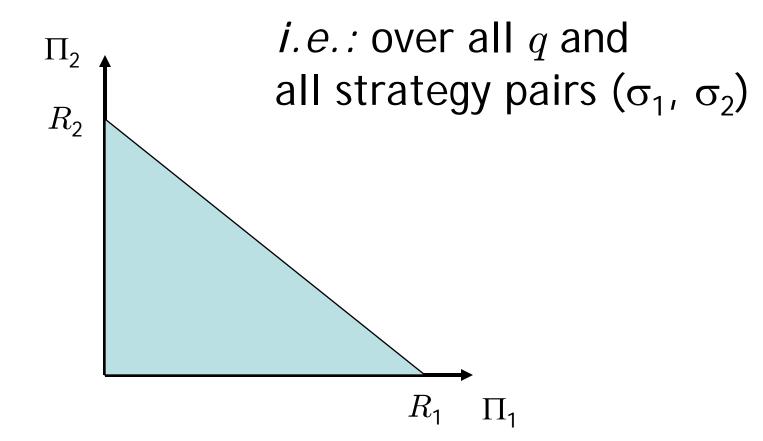
Suppose both devices agree to a protocol that decides when each device is allowed to transmit.

 Cooperative timesharing:

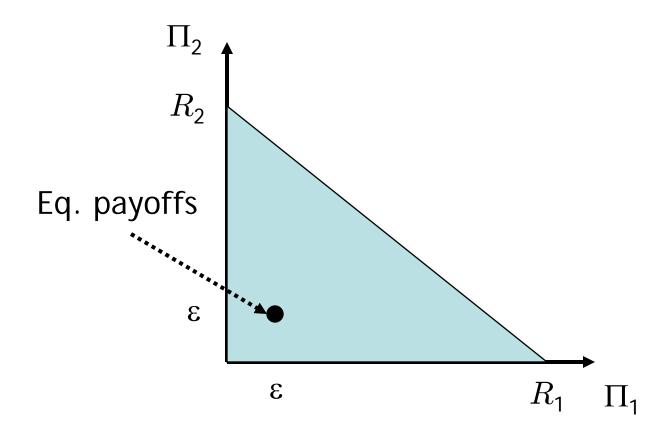
 Device 1 is allowed to transmit a fraction q of the time.

 Device 2 is allowed to transmit a fraction 1 - q of the time.
 Devices can use any mixed strategy when they control the channel.

Achievable payoffs via timesharing:



Achievable payoffs via timesharing:



 So when timesharing is used, the set of Pareto efficient payoffs becomes:

{ (Π_1, Π_2) : $\Pi_1 = q R_1, \Pi_2 = (1 - q) R_2$ }

• For efficiency: When device *n* has control, it transmits at power *P*

 So when timesharing is used, the set of Pareto efficient payoffs becomes:

{ (Π_1, Π_2) : $\Pi_1 = q R_1, \Pi_2 = (1 - q) R_2$ }

• For efficiency: When device *n* has control, it transmits at power *P*

 So when timesharing is used, the set of Pareto efficient payoffs becomes:

{ $(\Pi_1, \Pi_2) : \Pi_1 = q R_1, \Pi_2 = (1 - q) R_2$ }

(*Note:* in general, the set of achievable payoffs is the *convex hull* of entries in the payoff matrix)

Choosing an efficient point

Which *q* should the protocol choose?

• Choice 1: Utilitarian solution \Rightarrow Maximize total throughput $\max_{q} q R_{1} + (1 - q) R_{2} \Rightarrow q = 1$ $\Pi_{1} = R_{1}, \Pi_{2} = 0$ Is this "fair"?

Choosing an efficient point

Which *q* should the protocol choose?

• Choice 2: Max-min fair solution \Rightarrow Maximize smallest Π_n max_q min { $q \ R_1$, (1 - q) R_2 } $\Rightarrow q \ R_1 = (1 - q) \ R_2$, so $\Pi_1 = \Pi_2$ (i.e., equalize rates)

Fairness

Fairness corresponds to a rule for choosing between multiple efficient outcomes.

Unlike efficiency, there is no universally accepted definition of "fair."

Nash bargaining solution (NBS)

- Fix desirable properties of a "fair" outcome
- Show there exists a unique outcome satisfying those properties

NBS: Framework

- $T = \{ (\Pi_1, \Pi_2) : (\Pi_1, \Pi_2) \text{ is achievable } \}$
 - assumed closed, bounded, and convex
- $\Pi^* = (\Pi_1^*, \Pi_2^*) : status quo point$
 - each n can guarantee Π_n^* for himself through unilateral action

NBS: Framework

- $f(T, \Pi^*) = (f_1(T, \Pi^*), f_2(T, \Pi^*)) \in T$: a *"bargaining solution"*, i.e., a rule for choosing a payoff pair
- What properties (axioms) should f satisfy?

Axiom 1: Pareto efficiency

The payoff pair $f(T, \Pi^*)$ must be Pareto efficient in T.

Axiom 2: Individual rationality

For all n, $f_n(T, \Pi^*) \ge \Pi_n^*$.

Given
$$\mathbf{v} = (v_1, v_2)$$
, let
 $T + \mathbf{v} = \{ (\Pi_1 + v_1, \Pi_2 + v_2) : (\Pi_1, \Pi_2) \in T \}$
(i.e., a change of origin)

Axiom 3: Independence of utility origins

Given any
$$\mathbf{v} = (v_1, v_2),$$

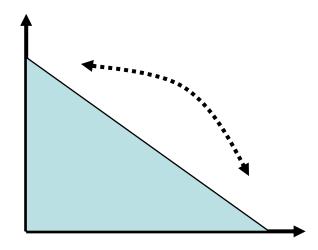
 $f(T + \mathbf{v}, \Pi^* + \mathbf{v}) = f(T, \Pi^*) + \mathbf{v}$

Given
$$\beta = (\beta_1, \beta_2)$$
, let
 $\beta \cdot T = \{ (\beta_1 \Pi_1, \beta_2 \Pi_2) : (\Pi_1, \Pi_2) \in T \}$
(i.e., a change of utility units)

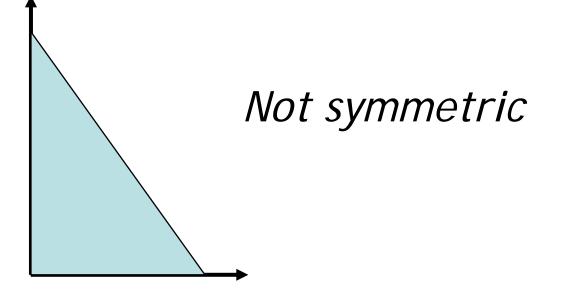
Axiom 4: Independence of utility units

Given any $\beta = (\beta_1, \beta_2)$, for each n we have $f_n(\beta \cdot T, (\beta_1 \Pi_1^*, \beta_2 \Pi_2^*)) = \beta_n f_n(T, \Pi^*)$

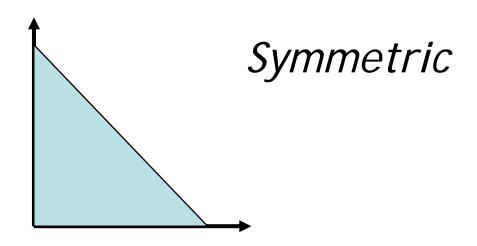
The set T is symmetric if it looks the same when the Π_1 - Π_2 axes are swapped:



The set T is symmetric if it looks the same when the Π_1 - Π_2 axes are swapped:



The set T is symmetric if it looks the same when the Π_1 - Π_2 axes are swapped:

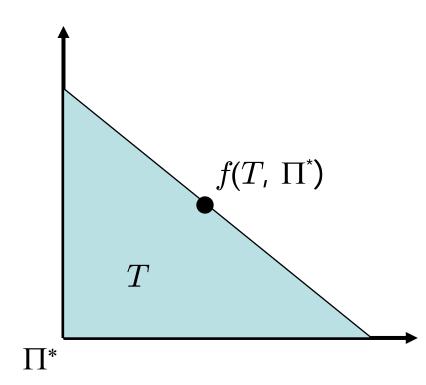


The set T is symmetric if it looks the same when the Π_1 - Π_2 axes are swapped.

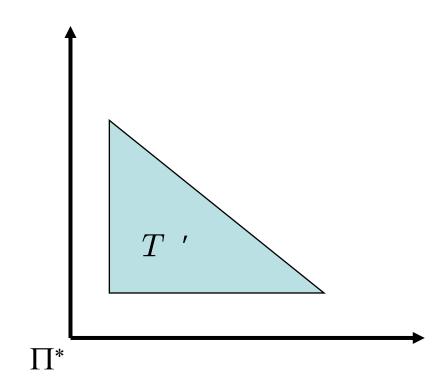
Axiom 5: Symmetry

If *T* is symmetric and $\Pi_1^* = \Pi_2^*$, then $f_1(T, \Pi^*) = f_2(T, \Pi^*)$.

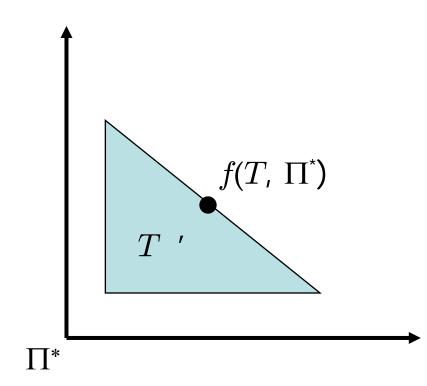
Axiom 6: Independence of irrelevant alternatives



Axiom 6: Independence of irrelevant alternatives



Axiom 6: Independence of irrelevant alternatives



Axiom 6: Independence of irrelevant alternatives

If $T' \subset T$ and $f(T, \Pi^*) \in T'$, then $f(T, \Pi^*) = f(T', \Pi^*)$.

Nash bargaining solution

Theorem (Nash):

There exists a unique f satisfying Axioms 1-6, and it is given by:

 $f(T, \Pi^*)$

 $= \arg \max_{\Pi \in T: \Pi \ge \Pi^{*}} (\Pi_{1} - \Pi_{1}^{*}) (\Pi_{2} - \Pi_{2}^{*})$ $= \arg \max_{\Pi \in T: \Pi \ge \Pi^{*}} \sum_{n = 1, 2} \log (\Pi_{n} - \Pi_{n}^{*})$

(Sometimes called proportional fairness.)

Nash bargaining solution

- The proof relies on *all* the axioms
- The utilitarian solution and the max-min fair solution do not satisfy independence of utility units
- See course website for excerpt from MWG

Back to the interference model

• NBS: $\max_{q} \log(q R_1 - \varepsilon) + \log((1 - q) R_2 - \varepsilon)$ Solution: $q = 1/2 + (\varepsilon/2)(1/R_1 - 1/R_2)$

e.g., when $\varepsilon = 0$,

 $\Pi_1^{\text{NBS}} = R_1/2, \ \Pi_2^{\text{NBS}} = R_2/2$

Comparisons

Assume $\varepsilon = 0$, $R_1 > R_2$

	q	Π_1	П ₂
Utilitarian	1	R_1	0
NBS	1/2	<i>R</i> ₁ /2	R ₂ /2
Max-min fair	$\frac{R_2}{R_1 + R_2}$	$\frac{R_1R_2}{R_1+R_2}$	$\frac{R_1R_2}{R_1+R_2}$

Summary

- When we say "efficient", we mean *Pareto efficient*.
- When we say "fair", we must make clear what we mean!
- Typically, Nash equilibria are not efficient
- The Nash bargaining solution is one axiomatic approach to fairness