MS&E 246: Lecture 3 Pure strategy Nash equilibrium

Ramesh Johari January 16, 2007

Outline

- Best response and pure strategy Nash equilibrium
- Relation to other equilibrium notions
- Examples
- Bertrand competition

Best response set

Best response set for player n to \mathbf{s}_{-n} : $R_n(\mathbf{s}_{-n}) = \arg \max_{s_n \in S_n} \prod_n(s_n, \mathbf{s}_{-n})$

[Note: arg $\max_{x \in X} f(x)$ is the set of x that maximize f(x)]

Nash equilibrium

Given: N-player game A vector $\mathbf{s} = (s_1, ..., s_N)$ is a *(pure strategy)* Nash equilibrium if: $s_i \in R_i(\mathbf{s}_{-i})$ for all players i.

Each *individual* plays a best response to the others.

Nash equilibrium

Pure strategy Nash equilibrium is robust to unilateral deviations

One of the hardest questions in game theory:

How do players know to play a Nash equilibrium?

Example: Prisoner's dilemma

Recall the routing game:

Example: Prisoner's dilemma

Here (near, near) is the unique (pure strategy) NE:

Summary of relationships

Given a game:

• Any DSE also survives ISD, and is a NE.

(DSE = dominant strategy equilibrium; ISD = iterated strict dominance)

Example: bidding game

Recall the bidding game from lecture 1:

		Player 2's bid					
		\$ 0	\$1	\$2	\$3	\$4	
Player 1's bid	\$0	\$4.00	\$4.00	\$4.00	\$4.00	\$4.00	
	\$1	\$11.00	\$7.00	\$5.67	\$5.00	\$4.60	
	\$2	\$10.00	\$7.33	\$6.00	\$5.20	\$4.67	
	\$3	\$9.00	\$7.00	\$5.80	\$5.00	\$4.43	
	\$4	\$8.00	\$6.40	\$5.33	\$4.57	\$4.00	

Example: bidding game

Here (2,2) is the unique (pure strategy) NE:

		Player 2's bid					
		\$ 0	\$1	\$2	\$3	\$4	
Player 1's bid	\$0	\$4.00	\$4.00	\$4.00	\$4.00	\$4.00	
	\$1	\$11.00	\$7.00	\$5.67	\$5.00	\$4.60	
	\$2	\$10.00	\$7.33	\$6.00	\$5.20	\$4.67	
	\$3	\$9.00	\$7.00	\$5.80	\$5.00	\$4.43	
	\$4	\$8.00	\$6.40	\$5.33	\$4.57	\$4.00	

Summary of relationships

Given a game:

- Any DSE also survives ISD, and is a NE.
- If a game is dominance solvable, the resulting strategy vector is a NE *Another example of this: the Cournot game.*
- Any NE survives ISD (and is also rationalizable).

(DSE = dominant strategy equilibrium; ISD = iterated strict dominance)

Example: Cournot duopoly

 $R_1(s_2)$

Unique NE: (*t*/3 , *t*/3)

Nash equilibrium = Any point *where the best response curves cross each other.*

Two players trying to *coordinate* their actions:

Best response of player 1: $R_1(L) = \{ \ I \}, \ R_1(R) = \{ \ r \}$

Best response of player 2: $R_2(I) = \{ L \}, R_2(I) = \{ R \}$

Two Nash equilibria: (*I*, *L*) and (*r*, *R*). Moral: NE is not a *unique predictor of play!*

Example: matching pennies

No pure strategy NE for this game Moral: Pure strategy NE may not exist.

Example: Bertrand competition

- In *Cournot* competition, firms choose the *quantity* they will produce.
- In *Bertrand* competition, firms choose the *prices* they will charge.

Bertrand competition: model

- Two firms
- Each firm i chooses a price $p_i \ge 0$
- Each unit produced incurs a cost $c \ge \mathbf{0}$
- Consumers only buy from the producer offering the *lowest price*
- Demand is D > 0

Bertrand competition: model

- Two firms
- Each firm i chooses a price p_i
- Profit of firm *i*:

$$\Pi_{i}(p_{1}, p_{2}) = (p_{i} - c)D_{i}(p_{1}, p_{2})$$
 where

$$\mathsf{D}_{i}(p_{1}, p_{2}) = \begin{cases} 0, & \text{if } p_{i} > p_{-i} \\ D, & \text{if } p_{i} < p_{-i} \\ \frac{1}{2} D, & \text{if } p_{i} = p_{-i} \end{cases}$$

Suppose firm 2 sets a price = $p_2 < c$. What is the *best response set* of firm 1?

Firm 1 wants to price higher than p_2 .

 $R_1(p_2) = (p_2, \infty)$

Suppose firm 2 sets a price = $p_2 > c$. What is the *best response set* of firm 1?

Firm 1 wants to price slightly lower than p_2 ... but there is **no** best response!

 $R_1(p_2) = \emptyset$

Suppose firm 2 sets a price = p_2 = c. What is the *best response set* of firm 1?

Firm 1 wants to price at or higher than c.

 $R_1(p_2) = [c, \infty)$

Best response of firm 1:

Best response of firm 2:

Where do they "cross"?

Thus the unique NE is where $p_1 = c$, $p_2 = c$.

Bertrand competition

Straightforward to show:

The same result holds if demand depends on price, i.e., if the demand at price p is D(p) > 0.

Proof technique:

(1) Show $p_i < c$ is never played in a NE. (2) Show if $c < p_1 < p_2$, then firm 2 prefers to lower p_2 . (3) Show if $c < p_1 = p_2$, then firm 2 prefers to lower p_2 .

Bertrand competition

What happens if $c_1 < c_2$?

No pure NE exists; however, an ε -NE exists:

Each player is happy as long as they are within ϵ of their optimal payoff.

$$\epsilon$$
-NE : $p_2 = c_2$, $p_1 = c_2 - \delta$
(where δ is infinitesimal)

Assume demand is D(p) = a - p. *Interpretation:* D(p) denotes the total number of consumers willing to pay *at least* p for the good.

Then the *inverse demand* is

P(Q) = a - Q.

This is the market-clearing price at which Q total units of supply would be sold.

Assume demand is D(p) = a - p. Then the *inverse demand* is P(Q) = a - Q.Assume c < a. Bertrand eq.: $p_1 = p_2 = c$ Cournot eq: $q_1 = q_2 = (a - c)/3$ \Rightarrow Cournot price = a/3 + 2c/3 > c

- Cournot eq. price > Bertrand eq. price
- Bertrand price = marginal cost of production
- In Cournot eq., there is positive deadweight loss.

This is because firms have *market power:* they anticipate their effect on prices.

Questions to think about

- Can a *weakly dominated* strategy be played in a Nash equilibrium?
- Can a *strictly dominated* strategy be played in a Nash equilibrium?
- Why is any NE rationalizable?
- What are real-world examples of Bertrand competition? Cournot competition?

Summary: Finding NE

Finding NE is typically a matter of checking the definition.

Two basic approaches...

Finding NE: Approach 1

First approach to finding NE:

(1) Compute the complete best response mapping for each player.

(2) Find where they intersect each other (graphically or otherwise).

Finding NE: Approach 2

Second approach to finding NE:

Fix a strategy vector (s₁, ..., s_N).
Check if any player has a *profitable deviation*.

If so, it cannot be a NE. If not, it is an NE.