MS\&E 246: Lecture 14
 Auctions: Examples

Ramesh J ohari

Example: Second price auction

- Action space (bids): $B_{i}=[0, \infty), \quad i=1,2$
- Winner:

$$
\begin{aligned}
w\left(b_{1}, b_{2}\right) & =1 \text { if } b_{1}>b_{2} \\
& =2 \text { if } b_{1} \leq b_{2}
\end{aligned}
$$

- Payments: $\quad p_{i}\left(b_{1}, b_{2}\right)=b_{-i}$ if $w\left(b_{1}, b_{2}\right)=i$; $=0$ otherwise
- Assume: $\phi_{1}=\phi_{2}=\phi$, continuous, positive everywhere on its domain, with distribution F

Example: Second price auction

Since $d_{i}\left(v_{i}\right)=v_{i}$ is a dominant action for each player,
$s_{i}\left(v_{i}\right)=v_{i}$ for $i=1,2$ is a BNE.
It is a symmetric and truthtelling BNE.

So the second price auction is incentive compatible.

Example: Second price auction

The truthtelling lemma tells us:
$S_{1}\left(v_{1}\right)=S_{1}(0)+\int_{0}^{v_{1}} \mathrm{P}_{1}(z) \mathrm{d} z$
But: $S_{1}(0)=0$

$$
\mathrm{P}_{1}\left(v_{1}\right)=\mathrm{P}\left(v_{1}>v_{2} \mid v_{1}\right)=\int_{0}^{v_{1}} \phi\left(v_{2}\right) \mathrm{d} v_{2}
$$

So $S_{1}\left(v_{1}\right)=\int_{0}^{v_{1}}\left[\int_{\mathbf{0}}^{z} \phi\left(v_{2}\right) \mathrm{d} v_{2}\right] \mathrm{d} z$
(Similarly for player 2)

Example: Second price auction

The truthtelling lemma tells us:
$S_{1}\left(v_{1}\right)=S_{1}(0)+\int_{0}^{v_{1}} \mathrm{P}_{1}(z) \mathrm{d} z$
But: $S_{1}(0)=0$

$$
\mathbf{P}_{1}\left(v_{1}\right)=\mathbf{P}\left(v_{1}>v_{2} \mid v_{1}\right)=\int_{0}^{v_{1}} \phi\left(v_{2}\right) \mathrm{d} v_{2}
$$

So $S_{1}\left(v_{1}\right)=\int_{0}^{v_{1}} F(z) \mathrm{d} z$
(Similarly for player 2)

Example: Second price auction

Expected payoff to player 1 , given type v_{1}
$=S_{1}\left(v_{1}\right)=\int_{0}^{v_{1}} F(z) \mathrm{d} z$
(Similarly for player 2)

Example: Second price auction

Are there any other symmetric BNE of the second price auction?

Suppose $s_{1}=s_{2}=s$ is such a BNE.

Example: Second price auction

By symmetric BNE theorem,
s is strictly increasing, and player 1 wins if and only if $v_{1}>v_{2}$

Expected payoff to player 1 of type v_{1} :

$$
S_{1}\left(v_{1}\right)=\int_{0}^{v_{1}}\left(v_{1}-s\left(v_{2}\right)\right) \phi\left(v_{2}\right) \mathrm{d} v_{2}
$$

Example: Second price auction

Observe that:

- $S_{i}(0)=0$ for $i=1,2$
- Highest valuation player always wins

So by payoff equivalence theorem:

$$
S_{1}\left(v_{1}\right)=S_{1}\left(v_{1}\right)
$$

Example: Second price auction

By payoff equivalence:

$$
S_{1}\left(v_{1}\right)=S_{1}\left(v_{1}\right)
$$

Example: Second price auction

By payoff equivalence:

$$
\int_{0}^{v_{1}} F(z) \mathrm{d} z=\int_{0}^{v_{1}}\left(v_{1}-s\left(v_{2}\right)\right) \phi\left(v_{2}\right) \mathrm{d} v_{2}
$$

Example: Second price auction

By payoff equivalence:

$$
\left.\int_{0}^{v_{1}} F(z) \mathrm{d} z=v_{1} F\left(v_{1}\right)-\int_{0}^{v_{1}} s\left(v_{2}\right)\right) \phi\left(v_{2}\right) \mathrm{d} v_{2}
$$

Differentiate:

$$
F\left(v_{1}\right)=F\left(v_{1}\right)+v_{1} \phi\left(v_{1}\right)-s\left(v_{1}\right) \phi\left(v_{1}\right)
$$

Example: Second price auction

By payoff equivalence:

$$
\left.\int_{0}^{v_{1}} F(z) \mathrm{d} z=v_{1} F\left(v_{1}\right)-\int_{0}^{v_{1}} s\left(v_{2}\right)\right) \phi\left(v_{2}\right) \mathrm{d} v_{2}
$$

Differentiate:

$$
0=v_{1} \phi\left(v_{1}\right)-s\left(v_{1}\right) \phi\left(v_{1}\right)
$$

Example: Second price auction

By payoff equivalence:

$$
\left.\int_{0}^{v_{1}} F(z) \mathrm{d} z=v_{1} F\left(v_{1}\right)-\int_{0}^{v_{1}} s\left(v_{2}\right)\right) \phi\left(v_{2}\right) \mathrm{d} v_{2}
$$

Differentiate:

$$
0=\left(v_{1}-s\left(v_{1}\right)\right) \phi\left(v_{1}\right)
$$

So: $v_{1}=s\left(v_{1}\right)$

Example: Second price auction

Conclude: truthtelling is unique symmetric BNE.

Expected revenue to auctioneer:
E[second highest valuation]

Example: First price auction

- Action space (bids): $B_{i}=[0, \infty), \quad i=1,2$
- Winner:

$$
\begin{aligned}
w\left(b_{1}, b_{2}\right) & =1 \text { if } b_{1}>b_{2} \\
& =2 \text { if } b_{1} \leq b_{2}
\end{aligned}
$$

- Payments: $p_{i}\left(b_{1}, b_{2}\right)=b_{i}$ if $w\left(b_{1}, b_{2}\right)=i$;
$=0$ otherwise
- Assume: $\phi_{1}=\phi_{2}=\phi$, continuous, positive everywhere on its domain, with distribution F

Example: First price auction

What are the symmetric BNE of the first price auction?

Suppose $s_{1}=s_{2}=s$ is a symmetric BNE.

Example: First price auction

By symmetric BNE theorem,
s is strictly increasing, and player 1 wins if and only if $v_{1}>v_{2}$

Expected payoff to player 1 of type v_{1} :

$$
\begin{aligned}
S_{1}^{\mathrm{FP}}\left(v_{1}\right) & =\int_{0}^{v_{1}}\left(v_{1}-s\left(v_{1}\right)\right) \phi\left(v_{2}\right) \mathrm{d} v_{2} \\
& =\left(v_{1}-s\left(v_{1}\right)\right) F\left(v_{1}\right)
\end{aligned}
$$

Example: First price auction

Observe that:

- $S_{i}(0)=0$ for $i=1,2$
- Highest valuation player always wins

So by payoff equivalence theorem,

$$
S_{1}{ }^{\mathrm{FP}}\left(v_{1}\right)=\text { expected payoff to type } v_{1}
$$ player in second price auction

Example: First price auction

By payoff equivalence:

$$
S_{1}{ }^{\mathrm{FP}}\left(v_{1}\right)=\int_{0}^{v_{1}} F(z) \mathrm{d} z
$$

Example: First price auction

By payoff equivalence:

$$
\left(v_{1}-s\left(v_{1}\right)\right) F\left(v_{1}\right)=\int_{0}^{v_{1}} F(z) \mathrm{d} z
$$

So:

$$
s(v)=v-\frac{\int_{0}^{v} F(z) d z}{F(v)}
$$

(e.g., when Φ is uniform: $s(v)=v / 2$)

Example: First price auction

$$
s(v)=v-\frac{\int_{0}^{v} F(z) d z}{F(v)}
$$

Observe that $s(v)<v$.
This practice is called bid shading.

Example: First price auction

Revenue equivalence also holds, so:

Expected revenue to auctioneer $=$ expected revenue under second price auction =
E[second highest valuation]
$<\mathbf{E}\left[\max \left\{v_{1}, v_{2}\right\}\right]$

Revenue

The shortfall between $\mathbf{E}\left[\max \left\{v_{1}, v_{2}\right\}\right]$ and expected revenue is called an
information rent:
At an equilibrium the buyers must make a profit if they reveal their private valuation.

Revenue

However, this relies on independent private valuations.

If valuations are correlated, the auctioneer can get expected revenue $=\mathbf{E}\left[\max \left\{v_{1}, v_{2}\right\}\right]$

See Problem Set 6.
(Theorem: Cremer and McLean, 1985)

