MS&E 246: Lecture 14 Auctions: Examples

Ramesh Johari

- Action space (bids): $B_i = [0, \infty)$, i = 1, 2
- Winner: $w(b_1, b_2) = 1 \text{ if } b_1 > b_2;$
- Payments: $p_i(b_1, b_2) = b_{-i}$ if $w(b_1, b_2) = i$; = 0 otherwise

 $= 2 \text{ if } b_1 \leq b_2$

• Assume: $\phi_1 = \phi_2 = \phi$, continuous, positive everywhere on its domain, with distribution *F*

Since $d_i(v_i) = v_i$ is a

dominant action for each player,

$$s_i(v_i) = v_i$$
 for $i = 1$, 2 is a BNE.

It is a symmetric and truthtelling BNE.

So the second price auction is *incentive compatible.*

The truthtelling lemma tells us: $S_1(v_1) = S_1(0) + \int_0^{v_1} P_1(z) dz$ But: $S_1(0) = 0$ $P_1(v_1) = P(v_1 > v_2 | v_1) = \int_0^{v_1} \phi(v_2) dv_2$

So
$$S_1(v_1) = \int_0^{v_1} \left[\int_0^z \phi(v_2) \, \mathrm{d}v_2 \right] \, \mathrm{d}z$$

(Similarly for player 2)

The truthtelling lemma tells us: $S_1(v_1) = S_1(0) + \int_0^{v_1} P_1(z) dz$ But: $S_1(0) = 0$ $P_1(v_1) = P(v_1 > v_2 | v_1) = \int_0^{v_1} \phi(v_2) dv_2$

So
$$S_1(v_1) = \int_0^{v_1} F(z) dz$$

(Similarly for player 2)

Expected payoff to player 1, given type v_1

$$= S_1(v_1) = \int_0^{v_1} F(z) \, \mathrm{d}z$$

(Similarly for player 2)

Are there any *other* symmetric BNE of the second price auction?

Suppose $s_1 = s_2 = s$ is such a BNE.

By symmetric BNE theorem, s is strictly increasing, and player 1 wins if and only if $v_1 > v_2$

Expected payoff to player 1 of type v_1 : $\underline{S}_1(v_1) = \int_0^{v_1} (v_1 - s(v_2)) \phi(v_2) dv_2$

Observe that:

- $S_i(0) = 0$ for i = 1, 2
- Highest valuation player always wins

So by payoff equivalence theorem:

$$S_1(v_1) = \underline{S}_1(v_1)$$

By payoff equivalence:

 $S_1(v_1) = \underline{S}_1(v_1)$

By payoff equivalence:

 $\int_{0}^{v_{1}} F(z) \, dz = \int_{0}^{v_{1}} (v_{1} - s(v_{2})) \, \phi(v_{2}) \, dv_{2}$

By payoff equivalence:

$$\int_{0}^{v_{1}} F(z) dz = v_{1}F(v_{1}) - \int_{0}^{v_{1}} s(v_{2}) \phi(v_{2}) dv_{2}$$

Differentiate:

$$F(v_{1}) = F(v_{1}) + v_{1} \phi(v_{1}) - s(v_{1}) \phi(v_{1})$$

By payoff equivalence:

$$\int_{0}^{v_{1}} F(z) dz = v_{1}F(v_{1}) - \int_{0}^{v_{1}} s(v_{2}) \phi(v_{2}) dv_{2}$$

Differentiate:

$$0 = v_1 \phi(v_1) - s(v_1) \phi(v_1)$$

By payoff equivalence:

$$\int_{0}^{v_{1}} F(z) dz = v_{1}F(v_{1}) - \int_{0}^{v_{1}} s(v_{2}) \phi(v_{2}) dv_{2}$$

Differentiate:

$$0 = (v_1 - s(v_1)) \phi(v_1)$$

So: $v_1 = s(v_1)$

Conclude: truthtelling is unique symmetric BNE.

Expected revenue to auctioneer: E[second highest valuation]

- Action space (bids): $B_i = [0, \infty), i = 1, 2$
- Winner: $w(b_1, b_2) = 1 \text{ if } b_1 > b_2;$
- Payments: $p_i(b_1, b_2) = b_i$ if $w(b_1, b_2) = i$; = 0 otherwise

 $= 2 \text{ if } b_1 \leq b_2$

• Assume: $\phi_1 = \phi_2 = \phi$, continuous, positive everywhere on its domain, with distribution *F*

What are the symmetric BNE of the first price auction?

Suppose $s_1 = s_2 = s$ is a symmetric BNE.

By symmetric BNE theorem, s is strictly increasing, and player 1 wins if and only if $v_1 > v_2$

Expected payoff to player 1 of type v_1 : $S_1^{\text{FP}}(v_1) = \int_0^{v_1} (v_1 - s(v_1)) \phi(v_2) dv_2$ $= (v_1 - s(v_1)) F(v_1)$

Observe that:

- $S_i(0) = 0$ for i = 1, 2
- Highest valuation player always wins

So by payoff equivalence theorem, $S_1^{FP}(v_1) = \text{expected payoff to type } v_1$ player in second price auction

By payoff equivalence: $S_1^{\text{FP}}(v_1) = \int_0^{v_1} F(z) dz$

By payoff equivalence: $(v_1 - s(v_1)) F(v_1) = \int_0^{v_1} F(z) dz$

So:

$$s(v) = v - \frac{\int_0^v F(z)dz}{F(v)}$$

(e.g., when Φ is uniform: s(v) = v/2)

$$s(v) = v - \frac{\int_0^v F(z) dz}{F(v)}$$

Observe that s(v) < v. This practice is called *bid shading*.

Revenue equivalence also holds, so:

Expected revenue to auctioneer =
expected revenue under
second price auction =
E[second highest valuation]
< E[max{ v₁, v₂ }]

Revenue

The shortfall between E[max{v₁, v₂}] and expected revenue is called an *information rent:*

At an equilibrium the buyers must make a profit if they reveal their private valuation.

Revenue

However, this relies on *independent private valuations.*

If valuations are correlated, the auctioneer can get expected revenue = $E[\max\{v_1, v_2\}]$

See Problem Set 6.

(Theorem: Cremer and McLean, 1985)