MS\&E 246: Lecture 13
Auctions: Imperfect information

Ramesh J ohari

Auctions: Theory

- Basic definitions
- Revelation principle
- Truthtelling lemma
- Payoff equivalence theorem
- Revenue equivalence theorem
- Symmetric BNE
- Examples next lecture

A basic auction model

- Assume two players want the same item
- Type of player i : valuation $v_{i} \geq 0$ Assume: $\mathrm{P}\left(v_{i} \leq x_{i}\right)=\Phi_{i}\left(x_{i}\right)$
F_{i} : continuous dist. on [0,V], with pdf ϕ_{i}
e.g. uniform: $\phi_{i}\left(x_{i}\right)=1 / V$, for $x_{i} \in[0, V]$

A basic auction model

Payoffs depend on winning and payment

- Let $w=i$ if player i wins
- Let $p_{i}=$ payment of player i
- Payoff to player i of type v_{i} :

$$
\Pi_{i}\left(w, p_{i} ; v_{i}\right)= \begin{cases}v_{i}-p_{i}, & \text { if } w=i \\ 0, & \text { otherwise }\end{cases}
$$

A basic auction model

An auction mechanism is:

- action set for each player, B_{i}
- mapping from actions to:
winner:

$$
w\left(b_{1}, b_{2}\right) \in\{1,2\}
$$

payments: $\quad p_{i}\left(b_{1}, b_{2}\right) \in[0, \infty), \quad i=1,2$

Payoff to i :

$$
\begin{aligned}
& Q_{i}\left(b_{1}, b_{2} ; v_{i}\right)= \\
& \quad \Pi_{i}\left(w(\mathbf{b}), p_{i}(\mathbf{b}) ; v_{i}\right)
\end{aligned}
$$

Example: Second price auction

- Action space (bids): $B_{i}=[0, \infty), \quad i=1,2$
- Winner:

$$
\begin{aligned}
w\left(b_{1}, b_{2}\right) & =1 \text { if } b_{1}>b_{2} \\
& =2 \text { if } b_{1} \leq b_{2}
\end{aligned}
$$

- Payments: $\quad p_{i}\left(b_{1}, b_{2}\right)=b_{-i}$ if $w\left(b_{1}, b_{2}\right)=i$; $=0$ otherwise

Bayes-Nash equilibrium

Strategy of $i: s_{i}:[0, \infty) \rightarrow B_{i}$
s_{1} is a Bayesian best response to s_{2} if:

$$
\begin{aligned}
& \int_{0}^{\infty} Q_{1}\left(s_{1}\left(v_{1}\right), s_{2}\left(v_{2}\right) ; v_{1}\right) \phi_{2}\left(v_{2}\right) d v_{2} \\
& \quad \geq \int_{0}^{\infty} Q_{1}\left(b_{1}, s_{2}\left(v_{2}\right) ; v_{1}\right) \phi_{2}\left(v_{2}\right) d v_{2}
\end{aligned}
$$

for all $b_{1} \in B_{1}$, and $v_{1} \geq 0$
(similar definition for player 2)

Bayes-Nash equilibrium

Strategy of $i: s_{i}:[0, \infty) \rightarrow B_{i}$
s_{1} is a Bayesian best response to s_{2} if:
$\mathrm{E}\left[Q_{1}\left(s_{1}\left(v_{1}\right), s_{2}\left(v_{2}\right) ; v_{1}\right) \mid v_{1}\right] \geq$

$$
\mathbf{E}_{v_{2}}\left[Q_{1}\left(b_{1}, s_{2}\left(v_{2}\right) ; v_{1}\right) \mid v_{1}\right]
$$

for all $b_{1} \in B_{1}$, and $v_{1} \geq 0$
(Similarly for player 2)

Bayes-Nash equilibrium

$\left(s_{1}, s_{2}\right)$ is a BNE if:

- s_{1} is a Bayesian best response to s_{2}
- s_{2} is a Bayesian best response to s_{1}

Second price auction and BNE

We start by finding a BNE for the second price auction.

Recall: Given type v_{i}, truthtelling is a weak dominant action for i :

$$
d_{i}\left(v_{i}\right)=v_{i}
$$

Dominant actions and BNE

Consider any Bayesian game with type spaces T_{1}, T_{2}.
Suppose for each type t_{i}, player i has a (weakly) dominant action $d_{i}\left(t_{i}\right)$:
$Q_{i}\left(d_{i}\left(t_{i}\right), a_{-i} ; t_{i}\right) \geq Q_{i}\left(a_{i}, a_{-i} ; t_{i}\right)$
for any other action a_{i}

Dominant actions and BNE

Then $\left(d_{1}(\cdot), d_{2}(\cdot)\right)$ is a BNE.

We know that for each player i :
$Q_{i}\left(d_{i}\left(t_{i}\right), d_{-i}\left(t_{-i}\right) ; t_{i}\right)$

$$
\geq Q_{i}\left(a_{i}, d_{-i}\left(t_{-i}\right) ; t_{i}\right)
$$

for all types t_{i}, t_{-i}, and actions a_{i}.

Dominant actions and BNE

Then $\left(d_{1}(\cdot), d_{2}(\cdot)\right)$ is a BNE.

Take expectations:
$\mathrm{E}\left[Q_{i}\left(d_{i}\left(t_{i}\right), d_{-i}\left(t_{-i}\right) ; t_{i}\right) \mid t_{i}\right]$

$$
\geq \mathrm{E}\left[Q_{i}\left(a_{i}, d_{-i}\left(t_{-i}\right) ; t_{i}\right) \mid t_{i}\right]
$$

for all types t_{i}, and actions a_{i}.
This is exactly the condition for a BNE.

Second price auction and BNE

Conclusion:
In the second price auction, truthtelling is a BNE :

$$
s_{i}\left(v_{i}\right)=d_{i}\left(v_{i}\right)=v_{i}
$$

(Note that this requires a dominant action for every possible type!)

Incentive compatibility

Auctions where truthtelling is a BNE, i.e., where:

$$
\begin{aligned}
& \text { 1. } B_{i}=[0, \infty) \text { for } i=1,2 \text {, and } \\
& \text { 2. } s_{i}\left(v_{i}\right)=v_{i} \text { for } i=1,2 \text { is a BNE }
\end{aligned}
$$

are called incentive compatible.

Revelation principle

The revelation principle shows how to create an incentive compatible auction from any auction with a BNE.

The revelation principle

Given: $B_{1}, B_{2}, w(\cdot), p_{1}(\cdot), p_{2}(\cdot)$
and a BNE $s_{1}(\cdot), s_{2}(\cdot)$

Create a new auction with:

$$
\begin{aligned}
& B_{1}=B_{2}=[0, \infty) \\
& w\left(b_{1}, b_{2}\right)=w\left(s_{1}\left(b_{1}\right), s_{2}\left(b_{2}\right)\right) \\
& p_{i}\left(b_{1}, b_{2}\right)=p_{i}\left(s_{1}\left(b_{1}\right), s_{2}\left(b_{2}\right)\right), \quad i=1,2
\end{aligned}
$$

The revelation principle

At the BNE of the original auction:

The revelation principle

In the new auction:
Ask players to declare valuation.

The revelation principle

Theorem:
The new auction is incentive compatible.

Further, the truthtelling strategies
in the new auction give exactly
the same outcomes as
the BNE of the original auction.

The revelation principle: Proof

For all v_{1},
$\mathrm{E}\left[Q_{1}\left(v_{1}, v_{2} ; v_{1}\right) \mid v_{1}\right]$

$$
\begin{aligned}
& =\mathrm{E}\left[Q_{1}\left(s_{1}\left(v_{1}\right), s_{2}\left(v_{2}\right) ; v_{1}\right) \mid v_{1}\right] \\
& \geq \mathrm{E}\left[Q_{1}\left(b_{1}, s_{2}\left(v_{2}\right) ; v_{1}\right) \mid v_{1}\right] \\
& \quad \text { for all } b_{1} \in B_{1}
\end{aligned}
$$

The revelation principle: Proof

For all v_{1},
$\mathrm{E}\left[Q_{1}\left(v_{1}, v_{2} ; v_{1}\right) \mid v_{1}\right]$

$$
\begin{aligned}
& =\mathrm{E}\left[Q_{1}\left(s_{1}\left(v_{1}\right), s_{2}\left(v_{2}\right) ; v_{1}\right) \mid v_{1}\right] \\
& \geq \mathrm{E}\left[Q_{1}\left(s_{1}\left(b_{1}\right), s_{2}\left(v_{2}\right) ; v_{1}\right) \mid v_{1}\right] \\
& \quad \text { for all } \underline{b}_{1} \in[0, \infty)
\end{aligned}
$$

The revelation principle: Proof

For all v_{1},
$\mathrm{E}\left[Q_{1}\left(v_{1}, v_{2} ; v_{1}\right) \mid v_{1}\right]$

$$
\begin{aligned}
& =\mathrm{E}\left[Q_{1}\left(s_{1}\left(v_{1}\right), s_{2}\left(v_{2}\right) ; v_{1}\right) \mid v_{1}\right] \\
& \geq \mathbb{E}\left[Q_{1}\left(b_{1}, v_{2} ; v_{1}\right) \mid v_{1}\right] \\
& \quad \text { for all } \underline{b}_{1} \in[0, \infty)
\end{aligned}
$$

(Similarly for player 2)

The revelation principle: Proof

Given v_{1}, v_{2} :
Outcome at truthtelling strategies
$=\left(w\left(v_{1}, v_{2}\right), p_{1}\left(v_{1}, v_{2}\right), p_{2}\left(v_{1}, v_{2}\right)\right)$
$=\left(w\left(s_{1}\left(v_{1}\right), s_{2}\left(v_{2}\right)\right)\right.$,
$p_{1}\left(s_{1}\left(v_{1}\right), s_{2}\left(v_{2}\right)\right)$,
$\left.p_{2}\left(s_{1}\left(v_{1}\right), s_{2}\left(v_{2}\right)\right)\right)$
=outcome at original BNE

The revelation principle

The new auction is called a
direct revelation mechanism (DRM).

Note:
It may have other, undesirable equilibria!!

Two useful results

For a wide range of auctions
(including first and second price),
we will show
payoff equivalence and revenue equivalence:

These auctions all have the same payoffs and auctioneer revenue at BNE.

Definitions

Suppose we are given a DRM.
Truthtelling expected payoff to player 1:
$S_{1}\left(v_{1}\right)=\mathrm{E}\left[Q_{1}\left(v_{1}, v_{2} ; v_{1}\right) \mid v_{1}\right]$
Truthtelling expected probability of winning for player 1 :

$$
\mathrm{P}_{1}\left(v_{1}\right)=\int_{0}^{\infty} I\left\{w\left(v_{1}, v_{2}\right)=1\right\} \phi_{2}\left(v_{2}\right) \mathrm{d} v_{2}
$$

The truthtelling lemma

Lemma: Truthtelling is a BNE if and only if for $i=1,2$:
(1) $S_{i}\left(v_{i}\right)=S_{i}(0)+\int_{0}^{v_{i}} \mathrm{P}_{i}(z) \mathrm{d} z$
(2) P_{i} is nondecreasing:

$$
v_{i} \geq v_{i}^{\prime} \Rightarrow \mathrm{P}_{i}\left(v_{i}\right) \geq \mathrm{P}_{i}\left(v_{i}^{\prime}\right)
$$

The truthtelling lemma: Proof

Truthtelling is a BNE if and only if:

$$
\begin{array}{r}
S_{1}\left(v_{1}\right) \geq \mathrm{E}\left[Q_{1}\left(v_{1}^{\prime}, v_{2} ; v_{1}\right) \mid v_{1}\right] \\
\\
\text { for all } v_{1}^{\prime} \geq 0
\end{array}
$$

(Similarly for player 2)

The truthtelling lemma: Proof

Truthtelling is a BNE if and only if:

$$
\begin{array}{r}
S_{1}\left(v_{1}\right) \geq \mathrm{E}\left[Q_{1}\left(v_{1}^{\prime}, v_{2} ; v_{1}\right) \mid v_{1}\right] \\
\\
\text { for all } v_{1}^{\prime} \geq 0
\end{array}
$$

$\mathrm{E}\left[Q_{1}\left(v_{1}{ }^{\prime}, v_{2} ; v_{1}\right) \mid v_{1}\right]=$
$\int_{0}^{\infty}\left[v_{1}-p_{1}\left(v_{1}{ }^{\prime}, v_{2}\right)\right] I\left\{w\left(v_{1}{ }^{\prime}, v_{2}\right)=1\right\} \phi_{2}\left(v_{2}\right) \mathrm{d} v_{2}$

The truthtelling lemma: Proof

Truthtelling is a BNE if and only if:

$$
\begin{array}{r}
S_{1}\left(v_{1}\right) \geq \mathrm{E}\left[Q_{1}\left(v_{1}^{\prime}, v_{2} ; v_{1}\right) \mid v_{1}\right] \\
\\
\text { for all } v_{1}^{\prime} \geq 0
\end{array}
$$

$\mathrm{E}\left[Q_{1}\left(v_{1}{ }^{\prime}, v_{2} ; v_{1}\right) \mid v_{1}\right]=$
$\int_{0}^{\infty}\left[v_{1}-p_{1}\left(v_{1}{ }^{\prime}, v_{2}\right)\right] I\left\{w\left(v_{1}{ }^{\prime}, v_{2}\right)=1\right\} \phi_{2}\left(v_{2}\right) \mathrm{d} v_{2}$

The truthtelling lemma: Proof

Truthtelling is a BNE if and only if:

$$
\begin{array}{r}
S_{1}\left(v_{1}\right) \geq \mathrm{E}\left[Q_{1}\left(v_{1}^{\prime}, v_{2} ; v_{1}\right) \mid v_{1}\right] \\
\\
\text { for all } v_{1}^{\prime} \geq 0
\end{array}
$$

$\mathrm{E}\left[Q_{1}\left(v_{1}{ }^{\prime}, v_{2} ; v_{1}\right) \mid v_{1}\right]=$
$v_{1} \mathrm{P}_{1}\left(v_{1}^{\prime}\right)-$
$\int_{0}^{\infty}\left[p_{1}\left(v_{1}{ }^{\prime}, v_{2}\right)\right] I\left\{w\left(v_{1}{ }^{\prime}, v_{2}\right)=1\right\} \phi_{2}\left(v_{2}\right) \mathrm{d} v_{2}$

The truthtelling lemma: Proof

Truthtelling is a BNE if and only if:
$S_{1}\left(v_{1}\right) \geq \mathrm{E}\left[Q_{1}\left(v_{1}^{\prime}, v_{2} ; v_{1}\right) \mid v_{1}\right]$
for all $v_{1}^{\prime} \geq 0$
$\mathrm{E}\left[Q_{1}\left(v_{1}{ }^{\prime}, v_{2} ; v_{1}\right) \mid v_{1}\right]=$
$v_{1} \mathrm{P}_{1}\left(v_{1}{ }^{\prime}\right)-v_{1}{ }^{\prime} \mathrm{P}_{1}\left(v_{1}{ }^{\prime}\right)$
$\int_{0}^{\infty}\left[v_{1}^{\prime}-p_{1}\left(v_{1}{ }^{\prime}, v_{2}\right)\right] I\left\{w\left(v_{1}{ }^{\prime}, v_{2}\right)=1\right\} \phi_{2}\left(v_{2}\right) \mathrm{d} v_{2}$

The truthtelling lemma: Proof

Truthtelling is a BNE if and only if:

$$
\begin{array}{r}
S_{1}\left(v_{1}\right) \geq \mathrm{E}\left[Q_{1}\left(v_{1}^{\prime}, v_{2} ; v_{1}\right) \mid v_{1}\right] \\
\\
\text { for all } v_{1}^{\prime} \geq 0
\end{array}
$$

$\mathrm{E}\left[Q_{1}\left(v_{1}{ }^{\prime}, v_{2} ; v_{1}\right) \mid v_{1}\right]=$
$v_{1} \mathrm{P}_{1}\left(v_{1}^{\prime}\right)-v_{1}^{\prime} \mathrm{P}_{1}\left(v_{1}^{\prime}\right)+S_{1}\left(v_{1}^{\prime}\right)$

The truthtelling lemma: Proof

Conclude:

Truthtelling is a BNE if and only if for $i=1,2$, and for all $v_{i}, v_{i}{ }^{\prime} \geq 0$:
$S_{i}\left(v_{i}\right) \geq S_{i}\left(v_{i}{ }^{\prime}\right)+\mathrm{P}_{i}\left(v_{i}{ }^{\prime}\right)\left(v_{i}-v_{i}{ }^{\prime}\right)$
i.e., S_{i} is convex.

The truthtelling lemma: Proof

Assume $v_{i}{ }^{\prime}>v_{i}$. Then:
$S_{i}\left(v_{i}\right) \geq S_{i}\left(v_{i}{ }^{\prime}\right)+\mathrm{P}_{i}\left(v_{i}{ }^{\prime}\right)\left(v_{i}-v_{i}{ }^{\prime}\right)$
$S_{i}\left(v_{i}{ }^{\prime}\right) \geq S_{i}\left(v_{i}\right)+\mathrm{P}_{i}\left(v_{i}\right)\left(v_{i}{ }^{\prime}-v_{i}\right)$
$\Rightarrow \mathrm{P}_{i}\left(v_{i}\right)\left(v_{i}{ }^{\prime}-v_{i}\right) \leq \mathrm{P}_{i}\left(v_{i}{ }^{\prime}\right)\left(v_{i}{ }^{\prime}-v_{i}\right)$
So $\mathrm{P}_{i}\left(v_{i}\right) \leq \mathrm{P}_{i}\left(v_{i}{ }^{\prime}\right) \Rightarrow \mathrm{P}_{i}$ is nondecreasing

The truthtelling lemma: Proof

If $v_{i}>v_{i}{ }^{\prime}$:

$$
\frac{S_{i}\left(v_{i}\right)-S_{i}\left(v_{i}^{\prime}\right)}{v_{i}-v_{i}^{\prime}} \geq \mathrm{P}_{i}\left(v_{i}^{\prime}\right)
$$

If $v_{i}<v_{i}{ }^{\prime}$:

$$
\frac{S_{i}\left(v_{i}\right)-S_{i}\left(v_{i}^{\prime}\right)}{v_{i}-v_{i}^{\prime}} \leq \mathrm{P}_{i}\left(v_{i}^{\prime}\right)
$$

Take $v_{i}{ }^{\prime} \uparrow v_{i}, v_{i}{ }^{\prime} \downarrow v_{i} \quad \Rightarrow \quad S_{i}{ }^{\prime}\left(v_{i}\right)=\mathrm{P}_{i}\left(v_{i}\right)$

The truthtelling lemma

How to use the truthtelling lemma:
(1) Use a BNE of an auction to create an incentive compatible DRM
(2) Apply the truthtelling lemma to characterize the original BNE

Payoff equivalence

Given two auctions with BNE such that:
-in each BNE, if $v_{i}=0$ then player i gets zero payoff; and
-in each BNE, item al ways goes to highest valuation player

Theorem: Both BNE yield the same expected payoff to each player.

Payoff equivalence: Proof

- Fix given $\operatorname{BNE}\left(s_{1}, s_{2}\right)$ of one of the auctions
- Construct incentive compatible DRM using revelation principle
- For this DRM:

$$
\begin{aligned}
& S_{i}(0)=0, \text { and } \\
& \underline{\mathrm{P}}_{i}\left(v_{i}\right)=\int_{\mathbf{0}}^{v_{i}} \phi_{-i}\left(v_{-i}\right) \mathrm{d} v_{-i}
\end{aligned}
$$

Payoff equivalence: Proof

Expected payoff to player 1 of type v_{1} : depends only on $S_{1}(0)$ and $\mathrm{P}_{1}(\cdot)$, by the truthtelling lemma
(Similarly for player 2)

Payoff equivalence: Proof

Expected payoff to player 1 of type v_{1} :
$\mathrm{E}\left[Q_{1}\left(s_{1}\left(v_{1}\right), s_{2}\left(v_{2}\right) ; v_{1}\right) \mid v_{1}\right]$

$$
\begin{aligned}
& =\mathrm{E}\left[Q_{1}\left(v_{1}, v_{2} ; v_{1}\right) \mid v_{1}\right] \\
& =S_{1}\left(v_{1}\right)=\int_{0}^{v_{1}}\left[\int_{0}^{v_{1}^{\prime}} \phi_{2}\left(v_{2}\right) \mathrm{d} v_{2}\right] \mathrm{d} v_{1}^{\prime}
\end{aligned}
$$

by the truthtelling lemma
(Similarly for player 2)

Payoff equivalence: Proof

So at given BNE of either auction, expected payoff to player 1 of type v_{1} is:

$$
\int_{0}^{v_{1}}\left[\int_{\mathbf{0}}^{v_{1}^{\prime}} \phi_{2}\left(v_{2}\right) \mathrm{d} v_{2}\right] \mathrm{d} v_{1}^{\prime}
$$

This does not depend on the BNE!
(Similarly for player 2)

Revenue equivalence

Given two auctions with BNE such that:
-in each BNE, if $v_{i}=0$ then player i gets zero payoff; and
-in each BNE, item al ways goes to highest valuation player

Theorem: Both BNE yield the same expected revenue to the auctioneer.

Revenue equivalence: Proof

Fix $\operatorname{BNE}\left(s_{1}, s_{2}\right)$ of one of the auctions
Note:

$$
\sum_{i=1}^{2} Q_{i}\left(s_{1}\left(v_{1}\right), s_{2}\left(v_{2}\right) ; v_{i}\right)
$$

$$
=v_{w\left(s_{1}\left(v_{1}\right), s_{2}\left(v_{2}\right)\right)}-p_{w\left(s_{1}\left(v_{1}\right), s_{2}\left(v_{2}\right)\right)}
$$

Revenue equivalence: Proof

Taking expectations:
Sum of expected payoffs to players
$=\mathbf{E}\left[\max \left\{v_{1}, v_{2}\right\}\right]$ -
Expected revenue to auctioneer

Revenue equivalence: Proof

Taking expected values:
Expected revenue to auctioneer
$=\mathrm{E}\left[\max \left\{v_{1}, v_{2}\right\}\right]-$
Sum of expected payoffs to players

Revenue equivalence: Proof

Taking expected values:
Expected revenue to auctioneer
$=\mathrm{E}\left[\max \left\{v_{1}, v_{2}\right\}\right]$ -
Sum of expected payoffs to players

Right hand side is same for BNE of both auctions (by payoff equivalence)

Revenue equivalence

Note that at BNE, expected payoffs to players are ≥ 0.

So:
Revenue to auctioneer $\leq \mathrm{E}\left[\max \left\{v_{1}, v_{2}\right\}\right]$

[Aside: optimal auction theory]

The problem of maximizing the equilibrium revenue to the auctioneer is called optimal auction design.
For this problem to be well-defined, an additional constraint is needed, individual rationality:
$\mathrm{E}\left[Q_{i}\left(s_{i}\left(v_{i}\right), \mathbf{s}_{-i}\left(\mathbf{v}_{-i}\right) ; v_{i}\right) \mid v_{i}\right] \geq 0$ for all i.
(Otherwise bidder i would not participate.)

[Aside: optimal auction theory]

The framework defined here can be used to characterize the optimal auction design for any distribution of players' valuations.
(See Myerson 1979)

Symmetric BNE

From now on, assume:

- $B_{1}=B_{2}=[0, \infty)$
- $\phi_{1}=\phi_{2}=\phi$ (same distribution)
(Assume ϕ is positive on its entire domain)
A BNE is symmetric if:
$s_{1}(v)=s_{2}(v)$ for all $v \geq 0$ $s(v)=s_{i}(v)$ is called the bid function.

Symmetric BNE theorem

Theorem:

If highest bidder wins,
then in a symmetric BNE with bid function s,
s is strictly increasing,
so the winning bidder also has
the highest valuation.
(In case of tie, assume player 2 wins)

Symmetric BNE: Proof

Apply revelation principle to build new incentive compatible auction:

$$
\begin{aligned}
& w\left(b_{1}, b_{2}\right)=w\left(s\left(b_{1}\right), s\left(b_{2}\right)\right) \\
& p_{i}\left(b_{1}, b_{2}\right)=p_{i}\left(s\left(b_{1}\right), s\left(b_{2}\right)\right), \quad i=1,2
\end{aligned}
$$

In this auction:

$$
\underline{P}_{1}\left(v_{1}\right)=\int_{0}^{\infty} I\left\{w\left(v_{1}, v_{2}\right)=1\right\} \phi\left(v_{2}\right) \mathrm{d} v_{2}
$$

Symmetric BNE: Proof

Apply revelation principle to build new incentive compatible auction:

$$
\begin{aligned}
& w\left(b_{1}, b_{2}\right)=w\left(s\left(b_{1}\right), s\left(b_{2}\right)\right) \\
& p_{i}\left(b_{1}, b_{2}\right)=p_{i}\left(s\left(b_{1}\right), s\left(b_{2}\right)\right), \quad i=1,2
\end{aligned}
$$

In this auction:

$$
\underline{\mathbf{P}}_{1}\left(v_{1}\right)=\int_{0}^{\infty} I\left\{w\left(s\left(v_{1}\right), s\left(v_{2}\right)\right)=1\right\} \phi\left(v_{2}\right) \mathrm{d} v_{2}
$$

Symmetric BNE: Proof

Apply revelation principle to build new incentive compatible auction:

$$
\begin{aligned}
& w\left(b_{1}, b_{2}\right)=w\left(s\left(b_{1}\right), s\left(b_{2}\right)\right) \\
& p_{i}\left(b_{1}, b_{2}\right)=p_{i}\left(s\left(b_{1}\right), s\left(b_{2}\right)\right), \quad i=1,2
\end{aligned}
$$

In this auction:

$$
\underline{\mathbf{P}}_{1}\left(v_{1}\right)=\int_{0}^{\infty} I\left\{s\left(v_{1}\right)>s\left(v_{2}\right)\right\} \phi\left(v_{2}\right) \mathrm{d} v_{2}
$$

Symmetric BNE: Proof

By truthtelling lemma,

$$
\int_{0}^{\infty} I\left\{s\left(v_{1}\right)>s\left(v_{2}\right)\right\} \phi\left(v_{2}\right) \mathrm{d} v_{2}
$$

is nondecreasing in v_{1}.

Only possible if $s(v)$ is nondecreasing in v.
We only need to show s is strictly increasing.

Symmetric BNE: Proof

We will show s is strictly increasing in the special case of the
first price auction:

$$
\begin{aligned}
p_{i}\left(b_{1}, b_{2}\right) & =b_{i} \text { if } w\left(b_{1}, b_{2}\right)=i \\
& =0 \text { otherwise }
\end{aligned}
$$

However, the result holds more generally for the other auctions we consider.

Symmetric BNE: Proof

Suppose s is not strictly increasing:

Symmetric BNE: Proof

Suppose s is not strictly increasing:

Symmetric BNE: Proof

Suppose s is not strictly increasing.
Fix $a<b$ such that:

$$
s(v)=s(a), \quad a \leq v \leq b
$$

We can assume: $a>s(a)$. (If not, just increase a slightly.)

Symmetric BNE: Proof

Given player 2 is using $s_{2}=s$, suppose player 1 bids

$$
b_{1}=s(a)+\varepsilon \text { when } v_{1}=a
$$

Then when $v_{1}=a$:

- Expected payment by player 1
increases by at most ε
- Player 1 wins if $v_{2} \in[a, b]$

Symmetric BNE: Proof

Given player 2 is using $s_{2}=s$, suppose player 1 bids

$$
b_{1}=s(a)+\varepsilon \text { when } v_{1}=a .
$$

Player 1's change in expected payoff

$$
\geq(a-s(a)-\varepsilon)(F(b)-F(a))-\varepsilon
$$

>0 for small enough ε
Profitable deviation!

Symmetric BNE: Proof

Conclude:
s is strictly increasing

So:
Winner must have highest valuation

Symmetric BNE

In general, can show the same result if:
(1) $p_{i}\left(b_{1}, b_{2}\right) \geq 0$ for all b_{1}, b_{2};
(2) the winner's payment is positive when at least one of b_{1}, b_{2} is positive; and
(3) $p_{1}\left(b_{1}, b_{2}\right)=p_{2}\left(b_{2}, b_{1}\right)$ for all b_{1}, b_{2} (permutation invariance)

Moral

Symmetric BNE of "standard auctions"
(first price, second price, etc.)
have the same expected payoffs and auctioneer revenue.

In particular,
Expected revenue $=E[$ second highest bid]
(Why?)

