MS\&E 246: Lecture 12
Static games of
incomplete information

Ramesh J ohari

Incomplete information

- Complete information means the entire structure of the game is common knowledge
- Incomplete information means "anything else"

Cournot revisited

Consider the Cournot game again:

- Two firms ($N=2$)
- Cost of producing $s_{n}: c_{n} s_{n}$
- Demand curve:

$$
\text { Price }=P\left(s_{1}+s_{2}\right)=a-b\left(s_{1}+s_{2}\right)
$$

- Payoffs:

$$
\text { Profit }=\Pi_{n}\left(s_{1}, s_{2}\right)=P\left(s_{1}+s_{2}\right) s_{n}-c_{n} s_{n}
$$

Cournot revisited

Suppose c_{i} is known only to firm i.
Incomplete information:
Payoffs of firms are not common knowledge.

How should firm i reason about what it expects the competitor to produce?

Beliefs

A first approach:
Describe firm 1's beliefs about firm 2.
Then need firm 2's beliefs about firm 1's beliefs...

And firm 1's beliefs about firm 2's beliefs about firm 1's beliefs...

Rapid growth of complexity!

Harsanyi's approach

Harsanyi made a key breakthrough in the analysis of incomplete information games:
He represented a static game of incomplete information as a dynamic game of complete but imperfect information.

Harsanyi's approach

- Nature chooses (c_{1}, c_{2}) according to some probability distribution.
- Firm i now knows c_{i}, but opponent only knows the distribution of c_{i}.
- Firms maximize expected payoff.

Harsanyi's approach

All firms share the same beliefs about incomplete information, determined by the common prior.

Intuitively:
Nature determines " who we are" at time 0, according to a distribution that is common knowledge.

Bayesian games

In a Bayesian game, player i 's preferences are determined by his type $\theta_{i} \in \mathbf{T}_{i}$; T_{i} is the type space for player i.

When player i has type θ_{i}, his payoff function is: $\quad \Pi_{i}\left(\mathrm{~s} ; \theta_{i}\right)$

Bayesian games

A Bayesian game with N players is a dynamic game of $N+1$ stages.

Stage 0: Nature moves first, and chooses a type θ_{i} for each player i, according to some joint distribution $\mathrm{P}\left(\theta_{1}, \ldots, \theta_{N}\right)$ on $\mathrm{T}_{1} \times \cdots \times \mathrm{T}_{N}$.

Bayesian games

Player i learns his own type θ_{i}, but not the types of other players.

Stage i : Player i chooses an action from S_{i}.

After stage N : payoffs are realized.

Bayesian games

An alternate, equivalent interpretation:

1) Nature chooses players' types.
2) All players simultaneously choose actions.
3) Payoffs are realized.

Bayesian games

- How many subgames are there?
- How many information sets does player i have?
- What is a strategy for player i ?

Bayesian games

- How many subgames are there?

ONE - the entire game.

- How many information sets does player i have?

ONE per type θ_{i}.

- What is a strategy for player i ?

A function from $\mathrm{T}_{i} \rightarrow S_{i}$.

Bayesian games

One subgame \Rightarrow
SPNE and NE are identical concepts.

A Bayesian equilibrium
(or Bayes-Nash equilibrium)
is a NE of this dynamic game.

Expected payoffs

How do players reason about uncertainty regarding other players' types?
They use expected payoffs.
Given $\mathrm{s}_{-i}(\cdot)$, player i chooses $a_{i}=s_{i}\left(\theta_{i}\right)$ to maximize
$\mathrm{E}\left[\Pi_{i}\left(a_{i}, \mathrm{~s}_{-i}\left(\theta_{-i}\right) ; \theta_{i}\right) \mid \theta_{i}\right]$

Bayesian equilibrium

Thus $s_{1}(\cdot), \ldots, s_{N}(\cdot)$ is a Bayesian equilibrium if and only if:
$s_{i}\left(\theta_{i}\right) \in \arg \max _{a_{i} \in S_{i}} \mathrm{E}\left[\Pi_{i}\left(a_{i}, \mathbf{s}_{-i}\left(\theta_{-i}\right) ; \theta_{i}\right) \mid \theta_{i}\right]$ for all θ_{i}, and for all players i.
[Notation: $\left.\mathrm{s}_{-i}\left(\theta_{-i}\right)=\left(s_{1}\left(\theta_{1}\right), \ldots, s_{i-1}\left(\theta_{i-1}\right), s_{i+1}\left(\theta_{i+1}\right), \ldots, s_{N}\left(\theta_{N}\right)\right)\right]$

Bayesian equilibrium

The conditional distribution $\mathrm{P}\left(\theta_{-i} \mid \theta_{i}\right)$ is called player i 's belief.
Thus in a Bayesian equilibrium, players maximize expected payoffs given their beliefs.
[Note: Beliefs are found using Bayes' rule:

$$
\left.\mathrm{P}\left(\theta_{-i} \mid \theta_{i}\right)=\mathrm{P}\left(\theta_{1}, \ldots, \theta_{N}\right) / \mathrm{P}\left(\theta_{i}\right)\right]
$$

Bayesian equilibrium

Since Bayesian equilibrium is a NE of a certain dynamic game of imperfect information,
it is guaranteed to exist
(as long as type spaces T_{i} are finite and action spaces S_{i} are finite).

Cournot revisited

Back to the Cournot example:
Let's assume c_{1} is common knowledge, but firm 1 does not know c_{2}.
Nature chooses c_{2} according to:
$c_{2}=c_{\mathrm{H}}, \mathrm{w} /$ prob. p
$=c_{\mathrm{L}}, \mathrm{w} /$ prob. $1-p$
(where $c_{\mathrm{H}}>c_{\mathrm{L}}$)

Cournot revisited

These are also informally called games of asymmetric information:
Firm 2 has information that firm 1 does not have.

Cournot revisited

- The type of each firm is their marginal cost of production, c_{i}.
- Note that c_{1}, c_{2} are independent.
- Firm 1's belief:

$$
\mathrm{P}\left(c_{2}=c_{\mathrm{H}} \mid c_{1}\right)=1-\mathrm{P}\left(c_{2}=c_{\mathrm{L}} \mid c_{1}\right)=p
$$

- Firm 2's belief: Knows c_{1} exactly

Cournot revisited

- The strategy of firm 1 is the quantity s_{1}.
- The strategy of firm 2 is a function:
$s_{2}\left(c_{\mathrm{H}}\right)$: quantity produced if $c_{2}=c_{\mathrm{H}}$
$s_{2}\left(c_{\mathrm{L}}\right)$: quantity produced if $c_{2}=c_{\mathrm{L}}$

Cournot revisited

We want a NE of the dynamic game.
Given s_{1} and c_{2}, Firm 2 plays a best response.
Thus given s_{1} and c_{2}, Firm 2 produces:

$$
R_{2}\left(s_{1}\right)=\left[\frac{a-c_{2}}{2 b}-\frac{s_{1}}{2}\right]^{+}
$$

Cournot revisited

Given $s_{2}(\cdot)$ and c_{1},
Firm 1 maximizes expected payoff.
Thus Firm 1 maximizes:
$\mathrm{E}\left[\Pi_{1}\left(s_{1}, s_{2}\left(c_{2}\right) ; c_{1}\right) \mid c_{1}\right]=$
$\left[p P\left(s_{1}+s_{2}\left(c_{\mathrm{H}}\right)\right)+(1-p) P\left(s_{1}+s_{2}\left(c_{\mathrm{L}}\right)\right)\right] s_{1}-c_{1} s_{1}$

Cournot revisited

- Recall demand is linear: $P(Q)=a-b Q$
- So expected payoff to firm 1 is:
$\left[a-b\left(s_{1}+p s_{2}\left(c_{\mathrm{H}}\right)+(1-p) s_{2}\left(c_{\mathrm{L}}\right)\right)\right] s_{1}-c_{1} s_{1}$
- Thus firm 1 plays best response to expected production of firm 2.

$$
R_{1}\left(s_{2}\right)=\left[\frac{a-c_{1}}{2 b}-\frac{p s_{2}\left(c_{H}\right)+(1-p) s_{2}\left(c_{L}\right)}{2}\right]^{+}
$$

Cournot revisited: equilibrium

- A Bayesian equilibrium has 3 unknowns:
$s_{1}, s_{2}\left(c_{\mathrm{H}}\right), s_{2}\left(c_{\mathrm{L}}\right)$
- There are 3 equations:

Best response of firm 1 given $s_{2}\left(c_{\mathrm{H}}\right), s_{2}\left(c_{\mathrm{L}}\right)$
Best response of firm 2 given s_{1},
when type is c_{H}
Best response of firm 2 given s_{1}, when type is c_{L}

Cournot revisited: equilibrium

- Assume all quantities are positive at BNE (can show this must be the case)
- Solution:

$$
\begin{aligned}
& s_{1}=\left[a-2 c_{1}+p c_{\mathrm{H}}+(1-p) c_{\mathrm{L}}\right] / 3 \\
& s_{2}\left(c_{\mathrm{H}}\right)=\left[a-2 c_{\mathrm{H}}+c_{1}\right] / 3+(1-p)\left(c_{\mathrm{H}}-c_{\mathrm{L}}\right) / 6 \\
& s_{2}\left(c_{\mathrm{L}}\right)=\left[a-2 c_{\mathrm{L}}+c_{1}\right] / 3-p\left(c_{\mathrm{H}}-c_{\mathrm{L}}\right) / 6
\end{aligned}
$$

Cournot revisited: equilibrium

When $p=0$, complete information: Both firms know $c_{2}=c_{\mathrm{L}} \Rightarrow \operatorname{NE}\left(s_{1}{ }^{(0)}, s_{2}{ }^{(0)}\right)$
When $p=1$, complete information:
Both firms know $c_{2}=c_{\mathrm{H}} \Rightarrow \operatorname{NE}\left(s_{1}{ }^{(1)}, s_{2}{ }^{(1)}\right)$
For $0<p<1$, note that:

$$
s_{2}\left(c_{\mathrm{L}}\right)<s_{2}{ }^{(0)}, \quad s_{2}\left(c_{\mathrm{H}}\right)>s_{2}^{(1)}, \quad s_{1}^{(0)}<s_{1}<s_{1}^{(1)}
$$

Why?

Coordination game

Consider coordination game with incomplete information:

Coordination game

t_{1}, t_{2} are independent uniform r.v.'s on [0, x].

Player i learns t_{i}, but not t_{-i}.

$$
\text { Player } 2
$$

Coordination game

Types: t_{1}, t_{2}
Beliefs:
Types are independent, so player i believes t_{-i} is uniform[$\left.0, x\right]$
Strategies:
Strategy of player i is a function $s_{i}\left(t_{i}\right)$

Coordination game

We'll search for a specific form of Bayesian equilibrium:
Assume each player i has a threshold c_{i}, such that the strategy of player 1 is:

$$
s_{1}\left(t_{1}\right)=\mathrm{l} \text { if } t_{1}>c_{1} ;=r \text { if } t_{1} \leq c_{1} .
$$ and the strategy of player 2 is:

$$
s_{2}\left(t_{2}\right)=\mathrm{R} \text { if } t_{2}>c_{2} ;=\mathrm{L} \text { if } t_{2} \leq c_{2}
$$

Coordination game

Given $s_{2}(\cdot)$ and t_{1}, player 1 maximizes expected payoff:
If player 1 plays I:

$$
\begin{aligned}
& \mathrm{E}\left[\Pi_{1}\left(\mathrm{I}, s_{2}\left(t_{2}\right) ; t_{1}\right) \mid t_{1}\right]= \\
& \quad\left(2+t_{1}\right) \cdot \mathrm{P}\left(t_{2} \leq c_{2}\right)+0 \cdot \mathrm{P}\left(t_{2}>c_{2}\right)
\end{aligned}
$$

If player 1 plays r :

$$
\begin{aligned}
& \mathrm{E}\left[\Pi_{1}\left(\mathrm{r}, s_{2}\left(t_{2}\right) ; t_{1}\right) \mid t_{1}\right]= \\
& \quad \mathrm{O} \cdot \mathrm{P}\left(t_{2} \leq c_{2}\right)+1 \cdot \mathrm{P}\left(t_{2}>c_{2}\right)
\end{aligned}
$$

Coordination game

Given $s_{2}(\cdot)$ and t_{1}, player 1 maximizes expected payoff:
If player 1 plays I:

$$
\begin{aligned}
& \mathrm{E}\left[\Pi_{1}\left(1, s_{2}\left(t_{2}\right) ; t_{1}\right) \mid t_{1}\right]= \\
& \\
& \quad\left(2+t_{1}\right)\left(c_{2} / x\right)
\end{aligned}
$$

If player 1 plays r :

$$
\begin{aligned}
& \mathrm{E}\left[\Pi_{1}\left(\mathrm{r}, s_{2}\left(t_{2}\right) ; t_{1}\right) \mid t_{1}\right]= \\
& \quad 1-c_{2} / x
\end{aligned}
$$

Coordination game

So player 1 should play I if and only if:

$$
t_{1}>x / c_{2}-3
$$

Similarly:
Player 2 should play R if and only if:

$$
t_{2}>x / c_{1}-3
$$

Coordination game

So player 1 should play I if and only if:

$$
t_{1}>x / c_{2}-3
$$

Similarly:
Player 2 should play R if and only if:

$$
t_{2}>x / c_{1}-3
$$

The right hand sides must be the thresholds!

Coordination game: equilibrium

Solve: $c_{1}=x / c_{2}-3, c_{2}=x / c_{1}-3$
Solution:

$$
c_{i}=\frac{\sqrt{9+4 x}-3}{2}
$$

Thus one Bayesian equilibrium is to play strategies $s_{1}(\cdot), s_{2}(\cdot)$, with thresholds c_{1}, c_{2} (respectively).

Coordination game: equilibrium

What is the unconditional probability that player 1 plays r ?
$=c_{1} / x \rightarrow 1 / 3$ as $x \rightarrow 0$
Thus as $x \rightarrow 0$, the unconditional distribution of play matches the mixed strategy NE of the complete information game.

Purification

This phenomenon is one example of purification:
recovering a mixed strategy NE via
Bayesian equilibrium of a perturbed game.
Harsanyi showed mixed strategy NE can "almost always" be purified in this way.

Summary

To find Bayesian equilibria, provide strategies $s_{1}(\cdot), \ldots, s_{N}(\cdot)$ where:
For each type θ_{i}, player i chooses $s_{i}\left(\theta_{i}\right)$ to maximize expected payoff given his belief $\mathrm{P}\left(\theta_{-i} \mid \theta_{i}\right)$.

