MS&E 246: Lecture 12 Static games of incomplete information

Ramesh Johari

Incomplete information

- Complete information means the entire structure of the game is common knowledge
- Incomplete information means "anything else"

Consider the Cournot game again:

- Two firms (*N* = 2)
- Cost of producing s_n : $c_n \ s_n$
- Demand curve:

 $Price = P(s_1 + s_2) = a - b (s_1 + s_2)$

• Payoffs:

Profit = $\Pi_n(s_1, s_2) = P(s_1 + s_2) s_n - c_n s_n$

Suppose c_i is known only to firm i. Incomplete information:

Payoffs of firms are not common knowledge.

How should firm *i reason* about what it expects the competitor to produce?

Beliefs

A first approach:

Describe firm 1's *beliefs* about firm 2.

- Then need firm 2's beliefs about firm 1's beliefs...
- And firm 1's beliefs about firm 2's beliefs about firm 1's beliefs...

Rapid growth of complexity!

Harsanyi's approach

Harsanyi made a key breakthrough in the analysis of incomplete information games:

He represented a *static game of incomplete information* as a *dynamic game of complete but imperfect information.*

Harsanyi's approach

- Nature chooses (c_1, c_2) according to some probability distribution.
- Firm *i* now knows c_i , but opponent only knows the *distribution* of c_i .
- Firms maximize *expected* payoff.

Harsanyi's approach

All firms share the *same* beliefs about incomplete information, determined by the *common prior*.

Intuitively:

Nature determines "who we are" at time 0, according to a distribution that is common knowledge.

In a Bayesian game, player *i*'s preferences are determined by his *type* $\theta_i \in T_i$; T_i is the *type space* for player *i*.

When player *i* has type θ_i , his payoff function is: $\Pi_i(\mathbf{s}; \theta_i)$

A *Bayesian game* with N players is a dynamic game of N + 1 stages.

Stage 0: *Nature* moves first, and chooses a type θ_i for each player *i*, according to some joint distribution $P(\theta_1, ..., \theta_N)$ on $T_1 \times \cdots \times T_N$.

Player *i* learns his own type θ_i , but not the types of other players.

Stage *i*: Player *i* chooses an action from S_i .

After stage N: payoffs are realized.

An alternate, equivalent interpretation:

- 1) Nature chooses players' types.
- 2) All players *simultaneously* choose actions.
- 3) Payoffs are realized.

- How many subgames are there?
- How many information sets does player *i* have?
- What is a strategy for player *i*?

- How many subgames are there?
 ONE the entire game.
- How many information sets does player *i* have?

ONE per type θ_i .

• What is a strategy for player *i*? A function from $T_i \rightarrow S_i$.

One subgame \Rightarrow SPNE and NE are identical concepts.

A *Bayesian equilibrium* (or *Bayes-Nash equilibrium*) is a NE of this dynamic game.

Expected payoffs

How do players reason about uncertainty regarding *other players' types?* They use *expected payoffs*. Given $\mathbf{s}_{-i}(\cdot)$, player *i* chooses $a_i = s_i(\theta_i)$ to maximize

 $\mathsf{E}[\Pi_i(a_i, \mathbf{s}_{-i}(\theta_{-i}); \theta_i) \mid \theta_i]$

Bayesian equilibrium

Thus $s_1(\cdot)$, ..., $s_N(\cdot)$ is a Bayesian equilibrium if and only if: $s_i(\theta_i) \in \arg \max_{a_i \in S_i} \mathbb{E}[\Pi_i(a_i, \mathbf{s}_{-i}(\theta_{-i}); \theta_i) | \theta_i]$ for all θ_i , and for all players i.

[Notation: $\mathbf{s}_{-i}(\theta_{-i}) = (s_1(\theta_1), \dots, s_{i-1}(\theta_{i-1}), s_{i+1}(\theta_{i+1}), \dots, s_N(\theta_N))$]

Bayesian equilibrium

- The conditional distribution $P(\theta_i \mid \theta_i)$ is called player *i*'s *belief*.
- Thus in a Bayesian equilibrium, players maximize expected payoffs given their beliefs.
- [*Note:* Beliefs are found using *Bayes' rule*: $P(\theta_{-i} | \theta_i) = P(\theta_1, ..., \theta_N)/P(\theta_i)$]

Bayesian equilibrium

Since Bayesian equilibrium is a NE of a certain dynamic game of imperfect information,

it is guaranteed to exist (as long as type spaces T_i are finite and action spaces S_i are finite).

Back to the Cournot example: Let's assume c_1 is common knowledge,

but firm 1 does not know c_2 .

Nature chooses c_2 according to:

$$c_2 = c_H$$
, w/prob. p
= c_L , w/prob. 1 - p
(where $c_H > c_L$)

These are also informally called games of *asymmetric information*: Firm 2 has information that firm 1 does not have.

- The *type* of each firm is their marginal cost of production, c_i .
- Note that c_1 , c_2 are *independent*.
- Firm 1's *belief*:

$$P(c_2 = c_H | c_1) = 1 - P(c_2 = c_L | c_1) = p$$

• Firm 2's *belief*: Knows c_1 exactly

- The strategy of firm 1 is the quantity s_1 .
- The *strategy* of firm 2 is a function:
 s₂(c_H) : quantity produced if c₂ = c_H
 s₂(c_L) : quantity produced if c₂ = c_L

We want a NE of the dynamic game.
Given s₁ and c₂, Firm 2 plays a best response.

Thus given s_1 and c_2 , Firm 2 produces:

$$R_2(s_1) = \left[\frac{a - c_2}{2b} - \frac{s_1}{2}\right]^+$$

Given $s_2(\cdot)$ and c_1 , Firm 1 maximizes *expected payoff*. Thus Firm 1 maximizes:

$$\mathsf{E}[\Pi_1(s_1, s_2(c_2); c_1) \mid c_1] =$$

 $[p P(s_1 + s_2(c_H)) + (1 - p)P(s_1 + s_2(c_L))] s_1 - c_1s_1$

- Recall demand is *linear*: P(Q) = a b Q
- So expected payoff to firm 1 is: [$a - b(s_1 + p s_2(c_H) + (1 - p)s_2(c_L))$] $s_1 - c_1 s_1$
- Thus firm 1 plays best response to expected production of firm 2.

$$R_1(s_2) = \left[\frac{a - c_1}{2b} - \frac{ps_2(c_H) + (1 - p)s_2(c_L)}{2}\right]^+$$

Cournot revisited: equilibrium

- A Bayesian equilibrium has 3 unknowns: s_1 , $s_2(c_{\rm H})$, $s_2(c_{\rm L})$
- There are 3 equations: Best response of firm 1 given s₂(c_H), s₂(c_L) Best response of firm 2 given s₁, when type is c_H
 Best response of firm 2 given s₁, when type is c_L

Cournot revisited: equilibrium

- Assume all quantities are positive at BNE (can show this must be the case)
- Solution:

$$s_{1} = [a - 2c_{1} + pc_{H} + (1 - p)c_{L}]/3$$

$$s_{2}(c_{H}) = [a - 2c_{H} + c_{1}]/3 + (1 - p)(c_{H} - c_{L})/6$$

$$s_{2}(c_{L}) = [a - 2c_{L} + c_{1}]/3 - p(c_{H} - c_{L})/6$$

Cournot revisited: equilibrium

When p = 0, complete information: Both firms know $c_2 = c_L \Rightarrow NE(s_1^{(0)}, s_2^{(0)})$ When p = 1, complete information: Both firms know $c_2 = c_H \Rightarrow NE(s_1^{(1)}, s_2^{(1)})$ For 0 , note that:

 $s_2(c_L) < s_2^{(0)}, s_2(c_H) > s_2^{(1)}, s_1^{(0)} < s_1 < s_1^{(1)}$

Why?

Consider coordination game with incomplete information:

 t_1 , t_2 are independent uniform r.v.'s on [0, x]. Player *i* learns t_i , but not t_{-i} . Player 2 R $(2 + t_1, 1)$ (0,0)Player 1 (0,0) $(1, 2 + t_2)$ r

```
Types: t_1, t_2
```

Beliefs:

Types are independent, so

player *i* believes t_{-i} is uniform[0, x]

Strategies:

Strategy of player *i* is a function $s_i(t_i)$

- We'll search for a specific form of Bayesian equilibrium:
- Assume each player *i* has a *threshold* c_i ,
 - such that the strategy of player 1 is:

$$s_1(t_1) = I$$
 if $t_1 > c_1$; $= r$ if $t_1 \le c_1$.
and the strategy of player 2 is:
 $s_2(t_2) = R$ if $t_2 > c_2$; $= L$ if $t_2 \le c_2$.

Given $s_2(\cdot)$ and t_1 , player 1 maximizes expected payoff: If player 1 plays *I*: E [$\Pi_1(I, s_2(t_2); t_1) | t_1$] = $(2 + t_1) \cdot P(t_2 \leq c_2) + 0 \cdot P(t_2 > c_2)$ If player 1 plays r: $\mathsf{E} \left[\Pi_{1}(r, s_{2}(t_{2}) ; t_{1}) \mid t_{1} \right] =$ $0 \cdot P(t_2 < c_2) + 1 \cdot P(t_2 > c_2)$

Given $s_2(\cdot)$ and t_1 , player 1 maximizes expected payoff: If player 1 plays *I*: E [$\Pi_1(I, s_2(t_2); t_1) | t_1$] = $(2 + t_1)(c_2/x)$ If player 1 plays r: E [$\Pi_1(r, s_2(t_2); t_1) | t_1$] = $1 - c_2/x$

So player 1 should play / if and only if: $t_1 > x/c_2 - 3$ Similarly: Player 2 should play *R* if and only if: $t_2 > x/c_1 - 3$

So player 1 should play / if and only if: $t_1 > x/c_2 - 3$ Similarly:

Player 2 should play *R* if and only if:

 $t_2 > x/c_1 - 3$

The right hand sides must be the thresholds!

Coordination game: equilibrium

Solve:
$$c_1 = x/c_2 - 3$$
, $c_2 = x/c_1 - 3$
Solution:

$$c_i = \frac{\sqrt{9+4x-3}}{2}$$

Thus one Bayesian equilibrium is to play strategies $s_1(\cdot)$, $s_2(\cdot)$, with thresholds c_1 , c_2 (respectively).

Coordination game: equilibrium

What is the *unconditional* probability that player 1 plays *r*?

$$= c_1/x \rightarrow 1/3 \text{ as } x \rightarrow 0$$

Thus as $x \rightarrow 0$, the unconditional distribution of play matches the *mixed strategy NE of the complete information game*.

Purification

This phenomenon is one example of *purification*:

recovering a mixed strategy NE via Bayesian equilibrium of a perturbed game. Harsanyi showed mixed strategy NE can

"almost always" be purified in this way.

Summary

To find Bayesian equilibria, provide strategies $s_1(\cdot)$, ..., $s_N(\cdot)$ where: For each type θ_i , player *i* chooses $s_i(\theta_i)$ to maximize expected payoff given his belief P($\theta_{-i} | \theta_i$).