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Classification problems
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Overview

Thus far in our study of prediction, we have focused on the
regression problem: Predict continuous outcomes.

In this lecture we (briefly) cover the classification problem: Predict
discrete outcomes.

Specifically, we will focus on binary classification, where the
outcome is zero or one.
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Example: Spam filtering

Suppose that you are running a mail server.

Given an incoming message your goal is to decide: Is this spam or
not?

Typical covariates:

I Counts of key words, phrases, etc.

I Indicator for origin domain of e-mail

I Indicators for links/domains present in the e-mail

I Indicator for whether sender is in your address book
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Example: Medical diagnostics

Suppose that given a patient, your goal is to determine whether
this person is likely to suffer an adverse medical event (e.g., a heart
attack).

Typical covariates:

I Weight, body mass index, obesity indicator

I Age

I Gender

I Cholesterol levels

I Indicator for family history

I Results of medical tests (blood tests, imaging, etc.)
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Example: Hiring in a labor market

Suppose that, given a job opening and an applicant, your goal is to
determine whether the applicant will be hired for the job opening.
Typical covariates:

I Indicators for skills of the applicant

I Indicators for skills required on the job

I Years of education, work experience of the applicant

I Years of education, work experience required in the job
opening

I Interactions between the preceding covariates

I Detail in applicant’s profile

I Who made the first contact: applicant or employer
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Classification: Formalism
Formally, classification problems look a lot like what we’ve studied
so far:

I There is a dataset with n observations; Yi is the outcome in
the i’th observation, and Xi is the covariate vector
corresponding to the i’th observation.

I For each i, Yi ∈ {0, 1} (or some other binary set). We refer to
zeroes as “negative” outcomes, and ones as “positive”
outcomes.

I Using the data, fit a model f̂ (a “classifier”). Given a
covariate vector ~X, f̂( ~X) ∈ {0, 1}.

I The model is evaluated through some measure of its
prediction error on new data (generalization error). Common
example is expected 0-1 loss on a new sample:

EY [I{Y 6= f̂( ~X)}|X,Y, ~X] = PY (Y 6= f̂( ~X)|X,Y, ~X).
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0-1 loss and “accuracy”

The 0-1 loss function is a measure of accuracy: How well, on
average, does the classifier make predictions?

Another way to say it: A good classifier minimizes the number of
samples on which the classifer makes a classification mistake.

Is this always what we want?
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Classification: Visualization
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Train-validate-test

The train-validate-test methodology carries over to classification in
a straightforward way:

Given a dataset, split it into training, validation, and test sets.

I Training: Use the training data to build different candidate
classifiers f̂ (1), . . ., f̂ (L).

I Validation: Compute the average 0-1 loss of each of the L
classifiers on the validation data. Choose the classifier f̂∗ with
the lowest loss (i.e., lowest misclassification rate, or highest
accuracy).

I Test: Make predictions using f̂∗ on the test set to get an
unbiased estimate of the generalization error.
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False positives and false negatives
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Example: Fraud detection

Suppose that you are asked to build a fraud detection algorithm for
PayPal.

Data: Transactions, including account info, profile info, etc. of
both parties, as well as amount and type of transaction

Outcomes: For each transaction, either zero (not fraud) or one
(fraud)

Suppose: 0.3% of transactions are fraud.

Your job: build a “good” classifier. Is accuracy the right objective?
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Beyond accuracy
Because of the issue identified in the preceding example, we should
distinguish between misclassification of positive samples and
negative samples.

For this purpose we typically use the confusion matrix of a
classifier on a test set.1

Predicted
0 1 Total

A
ct

u
al 0 TN FP TN + FP

1 FN TP FN + TP
Total TN + FN TP + FP n

Here:

I TN = # of true negatives; FP = # of false positives

I FN = # of false negatives; TP = # of true positives
1Be careful! One source of “confusion” about confusion matrices is that

sometimes the truth indexes the rows, and sometimes the truth indexes the
columns.
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Confusion matrices
How to interpret confusion matrices:
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Other metrics
Nearly every metric of interest in binary classification can be
derived from confusion matrices:

I Accuracy = (TP + TN)/n.

I Mean 0-1 loss = (FP + FN)/n = 1 − accuracy.

I True positive rate (TPR) = TP/(FN + TP).

I False positive rate (FPR) = FP/(TN + FP).

I True negative rate (TNR) = TN/(TN + FP).

I False negative rate (FNR) = FN/(FN + TP).

I Sensitivity = TPR.

I Specificity = TNR.

I Precision = TP/(TP + FP).

I Recall = sensitivity = TPR.

I Type I error rate = FPR.

I Type II error rate = FNR.

I False discovery rate = FP/(TP + FP)
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False positives and false negatives

Except for accuracy and 0-1 loss, all these metrics are just different
ways of measuring the two kinds of error that can be made by the
classifier:

1. Misclassifying a true negative example as a positive (false
positive, or Type I error).

2. Misclassifying a true positive example as a negative (false
negative, or Type II error).
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A tradeoff

Note that:

1. It is easy to design a classifier with no false positives. (How?)

2. It is easy to design a classifier with no false negatives. (How?)

On the other hand, in general there is “no free lunch”: it is
generally not possible to ensure both no false positives and no false
negatives.

In general, for “good” classifiers, reducing false positives comes at
the expense of increasing false negatives.

Therefore in designing a classifier it is important to consider which
type of error is more consequential to you.2

2Note that this sometimes leads to objectives that are weighted sums of the
entries of the confusion matrix.
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Example: Fraud detection

As an example, suppose that you build a classifier for fraud
detection on a dataset with n = 50, 000 with the following
confusion matrix:

Predicted
Not Fraud Fraud Total

A
ct

u
al Not Fraud 49, 603 247 49, 850

Fraud 22 128 150
Total 49, 625 375 50, 000

I Note that this classifier has lower accuracy than one that just
always predicts “Not Fraud.”

I Would you use this classifier? What if reducing the false
negatives to zero also meant increasing false positives to
≈ 1000?
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Example: Fraud detection
Analysis:
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Building a classifier
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Optimal prediction

In regression, we saw that if we knew the population model, then:

I Given a new covariate vector ~X, the best prediction we could
make (in terms of squared error) was the conditional
expectation f( ~X) = E[Y | ~X].

I Even if we did so, there is still some error remaining in our
predictions: the irreducible error.

What is the analogue of conditional expectation for classification
with 0-1 loss?
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The Bayes classifier

Suppose we want to minimize 0-1 loss (i.e., maximize accuracy).
Note that:

EY [I{Y 6= f̂( ~X)}| ~X] = PY (Y 6= f̂( ~X)| ~X).

How do we minimize this?

I If Y is more likely to be 0 than 1 (given ~X), then we should
set f̂( ~X) = 0; and vice versa.

I In other words: If PY (Y = 0| ~X) > 1/2, set f̂( ~X) = 0;
otherwise if PY (Y = 1| ~X) > 1/2, set f̂( ~X) = 1.

This is called the Bayes classifier.
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Approximating the Bayes classifier

The Bayes classifier is unattainable as a predictive model, for the
same reason the conditional expectation is unattainable: we don’t
know the population model.

In general, good classification models (with respect to 0-1 loss) are
those that approximate the Bayes classifier well.

One example we explore: k-nearest-neighbor classification.
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An example: k-nearest-neighbor
classification
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k-nearest-neighbor classification

Basic version:

I Given a covariate vector ~X, find the k nearest neighbors.

I Take a majority vote to determine the classification.3

This approximates the Bayes classifier by local averaging.

3Ties are typically broken at random among the furthest neighbors, or just
by choosing k odd.
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Adding a threshold

More generally, let NN(k, L) denote the k-nearest neighbor
algorithm with a threshold L:

I Require at least L of the k nearest neighbors to have label 1
to assign label 1; otherwise assign label 0.

I Basic algorithm corresponds to NN(k, k/2).

I What happens if L = 0?

I What happens if L > k?
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Example: The CORIS dataset

462 South African males evaluated for heart disease.

Outcome variable: Coronary heart disease (chd).

Covariates:

I Systolic blood pressure (sbp)

I Cumulative tobacco use (tobacco)

I LDL cholesterol (ldl)

I Adiposity (adiposity)

I Family history of heart disease (famhist)

I Type A behavior (typea)

I Obesity (obesity)

I Current alcohol consumption (alcohol)

I Age (age)
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Example: The CORIS dataset

Steps:

I Import the data

I (Random) split into train and test

I Train NN(k, L) for range of k, and for L = ak, a ∈ [0, 1.05]

I Record TP,FP,TN,FN on test set.
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Example: The CORIS dataset

Prediction error (0-1 loss) on test set:
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Example: The CORIS dataset

FPR vs. TPR for the choice k = 10, as threshold L/k varies:
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The ROC curve

The graph of FPR vs. TPR as the classifier’s threshold is varied is
called the ROC curve (for “receiver operating characteristic”).

The area under the curve (AUC) is often reported as a measure of
the quality of the classifier:

I Better classifiers are further “up and to the left” in the graph.

I A perfect classifier would have zero FPR and unit TPR ≡ top
left corner.

I Therefore a perfect classifier should have AUC 1.

I The closer the AUC is to 1, the better the classifier is on both
types of errors.
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More on ROC curves
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Model scoring and selection for
classification
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Cross validation

As noted previously, cross validation is a completely general
technique that can be applied regardless of the model class or loss
function being used.

In particular, K-fold CV can be used in exactly the same way for
evaluation and selection of classifiers with 0-1 loss (or any other
objective derived from the confusion matrix).
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Model complexity scores

The scores we developed (Cp, AIC, BIC) are also developed only
for squared error loss.

In practice, AIC and BIC are often used even in the case of 0-1 loss.

There is no formal justification for this practice, except that both
scores provide a heuristic penalty for excessive model complexity.
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Bias, variance, and model complexity

Note that the bias-variance decomposition we computed only
applies for squared error loss.

There are versions of this decomposition that have been developed
for 0-1 loss as well, though one has to be careful in interpreting
them.4

In general, just as there is often a “bias-variance tradeoff” in
regression, something similar is true in classification:

I More “complex” models (e.g., lower k in k-NN classification)
tend to overfit the training data, and thus have higher
variance, but have lower bias.

I Less “complex” models (e.g., higher k in k-NN classification)
tend to underfit the training data, and thus have lower
variance, but have higher bias.

4See P. Domingos (2000), “A unified bias-variance decomposition”, ICML.
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