MS&E 226: "Small" Data Lecture 7: Model selection (v3)

Ramesh Johari ramesh.johari@stanford.edu

October 17, 2016

Model selection

Overview

Model selection refers to the process of comparing a variety of models (using, e.g., model complexity scores, cross validation, or validation set error.

In this lecture we describe a few strategies for model selection, then compare them in the context of a couple of real datasets.

Throughout, our goal is prediction. Therefore we compare models through estimates of their generalization error ("model scores"): e.g., training error (sum of squared residuals), R^2 , C_p , AIC, BIC, cross validation, validation set error, etc.

Model selection: Goals

There are two types of qualitative goals in model selection:

- Minimize prediction error. This is our primary goal in this lecture.
- Interpretability. We will have more to say about this in the next unit of the class.

Both goals often lead to a desire for "parsimony": roughly, a desire for smaller models over more complex models.

Subset selection

Suppose we have p covariates available, and we want to find which p to include in a linear regression fit by OLS.

One approach is:

For each subset S ⊂ {1,...,p}, compute the OLS solution with just the subset of covariates in S.

Select the subset that minimizes the chosen model score. Implemented in R via the leaps package (with C_p or R^2 as model score).

Problem: Computational complexity scales exponentially with number of covariates.

Forward stepwise selection

Another approach:

- **1.** Start with $S = \emptyset$.
- 2. Add the single covariate to S that leads to greatest reduction in model score.
- 3. Repeat steps 1-2.

Implemented in R via the step function (with AIC or related model scores).

The computational complexity of this is only quadratic in the number of covariates (and often much less).

Backward stepwise selection

Another approach:

- **1.** Start with $S = \{1, \ldots, p\}$.
- 2. Delete the single covariate from S that leads to greatest reduction in model score.
- 3. Repeat steps 1-2.

Also implemented via step in R.

Also quadratic computational complexity, though it can be worse than forward stepwise selection when there are many covariates. (In fact, backward stepwise selection can't be used when $n \leq p$ — why?)

Stepwise selection: A warning

When applying stepwise regression, you are vulnerable to the same issues discussed earlier:

- The same data is being used repeatedly to make selection decisions.
- In general, this will lead to downward biased estimates of your prediction error.

The train-validate-test methodology can mitigate this somewhat, by providing an objective comparison.

To reiterate: Practitioners often fail to properly isolate test data during the model building phase!

Regularization

Lasso minimizes:

$$\mathsf{SSE} + \lambda \sum_{j=1}^p |\hat{\beta}_j|$$

where $\lambda > 0$.

Ridge regression minimizes:

$$SSE + \lambda \sum_{j=1}^{p} |\hat{\beta}_j|^2.$$

where $\lambda > 0$.

Regularization

Both lasso and ridge regression are "shrinkage" methods for model selection:

- Relative to OLS, both lasso and ridge regression will yield coefficients β̂ that have "shrunk" towards zero.
- The most explanatory covariates are the ones that will be retained.
- Lasso typically yields a much smaller subset of nonzero coefficients than ridge regression or OLS (i.e., fewer nonzero entries in β̂).

To use these for model selection, tune λ to minimize the desired model score.

Intuition for lasso

Why does lasso tend to "truncate" more coefficients at zero than ridge?

Intuition for lasso

Example: Crime dataset

Crime dataset

From:

http://lib.stat.cmu.edu/DASL/Datafiles/USCrime.html

Contains data on crime rates in 47 US states in 1960. Synthesized from government statistics.

Crime dataset

R Crime rate: # of offenses reported to)
police per million population	
Age The number of males of age 14-24	
per 1000 population	
S Indicator variable for Southern states	
(0 = No, 1 = Yes)	
Ed Mean $\#$ of years of schooling \times 10	
for persons of age 25 or older	
Ex0 1960 per capita expenditure on polic	е
by state and local government	
Ex1 1959 per capita expenditure on polic	е
by state and local government	
LF Labor force participation rate per 10	00
civilian urban males age 14-24	

Crime dataset

Variable name	Description
М	The number of males per 1000 females
N	State population size in hundred thousands
NW	The number of non-whites per 1000 population
U1	Unemployment rate of urban males
	per 1000 of age 14-24
U2	Unemployment rate of urban males
	per 1000 of age 35-39
W	Median value of transferable goods
	and assets or family income in tens of \$
Х	The number of families per 1000
	earning below $1/2$ the median income

Forward stepwise regression

```
> fm.lower = lm(data = crime.df, R ~ 1)
> fm.upper = lm(data = crime.df, R ~ .)
> step(fm.lower,
            scope = list(lower = fm.lower,
            upper = fm.upper),
            direction = "forward")
```

Forward stepwise regression: Step 1

Start: AIC=344.58

R~1

	Df	\mathtt{Sum}	of Sq	RSS	AIC
+ Ex0	1		32533	36276	316.49
+ Ex1	1		30586	38223	318.95
+ W	1		13402	55408	336.40
+ N	1		7837	60973	340.90
+ Ed	1		7171	61638	341.41
+ M	1		3149	65661	344.38
<none></none>				68809	344.58
+ LF	1		2454	66355	344.87
+ X	1		2205	66604	345.05
+ U2	1		2164	66646	345.08
+ S	1		565	68244	346.19
+ Age	1		551	68258	346.20
+ U1	1		175	68634	346.46
+ NW	1		73	68736	346.53

Forward stepwise regression: Step 2

Step: AIC=316.49 R ~ ExO

	Df	Sum of Sq	RSS	AIC
+ X	1	7398.2	28878	307.77
+ Age	1	6167.4	30109	309.73
+ M	1	2505.2	33771	315.13
+ NW	1	2324.3	33952	315.38
+ S	1	2191.0	34085	315.56
+ W	1	1808.7	34468	316.09
<none></none>			36276	316.49
+ Ex1	1	1461.7	34815	316.56
+ LF	1	774.8	35501	317.48
+ U2	1	178.5	36098	318.26
+ N	1	56.7	36220	318.42
+ U1	1	28.8	36247	318.45
+ Ed	1	7.7	36269	318.48

Forward stepwise regression: Final output

```
Call:

lm(formula = R ~ Ex0 + X +

Ed + Age + U2 + W, data = crime.df)

Coefficients:

(Intercept) Ex0 X Ed Age U2

-618.5028 1.0507 0.8236 1.8179 1.1252 0.8282

W

0.1596
```

Backward stepwise regression yields the same result. Is this an interpretable model?

Example: Baseball hitters

Baseball hitters

Data taken from An Introduction to Statistical Learning.

Consists of statistics and salaries for 263 Major League Baseball players.

We use this dataset to:

- Develop the train-test method
- Apply lasso and ridge regression
- Compare and interpret the results

We'll use the glmnet package for this example.

Loading the data

glmnet uses matrices rather than data frames for model building:

- > library(ISLR)
- > library(glmnet)
- > data(Hitters)
- > hitters.df = subset(na.omit(Hitters))
- > X = model.matrix(Salary ~ 0 ., hitters.df)
- > Y = hitters.df\$Salary

Here is a simple way to construct training and test sets from the single dataset:

```
train.ind = sample(nrow(X), round(nrow(X)/2))
X.train = X[train.ind,]
X.test = X[-train.ind,]
Y.train = Y[train.ind]
Y.test = Y[-train.ind]
```

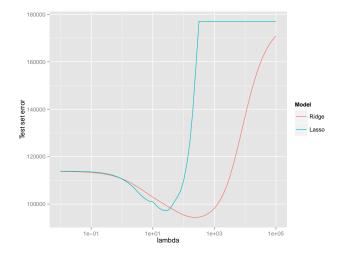
Ridge and lasso

Building a lasso model:

Setting alpha = 0 gives ridge regression. Make predictions as follows at $\lambda = lam$:

```
> mean( (Y.test -
    predict(fm.lasso, s = lam, newx = X.test))^2 )
```

Results



What is happening to lasso?

Lasso coefficients

Using plot(fm.lasso, xvar="lambda"):

