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Regression analysis of experiments
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Regression analysis of an experiment

Recall using OLS to fit the following model:

Yi ≈ β̂0 + β̂1Wi,

where Wi ∈ {0, 1} is the assignment in a randomized experiment
(0 is control, 1 is treatment), and Yi is the corresponding observed
outcome for individual i.
As we showed:

I β̂0 is the average outcome in the control group.

I β̂0 + β̂1 is the average outcome in the treatment group.

I β̂1 = ÂTE.
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Going further

In this lecture we consider what happens when we have additional
covariates we can exploit in our analysis.

Suppose in addition to Y (0), Y (1), and W , each individual also
has a vector of observed covariates ~X.

There are two ways in which the regression approach to
experimental analysis is powerful:

I Controlling for observed covariates helps improve estimation
of the ATE.

I Interactions with the treatment effect allow us to see how the
treatment effect varies among individuals with different
covariate vectors.

Warning: The covariates ~X must be observed pre-treatment!
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Controlling for observables: An example

I created a synthetic experiment where n0 = n1 = 150.

For each individual i, Xi ∼ N (0, 1) is a pre-existing covariate, and
Wi is the treatment indicator.

I contructed Yi as:

Yi = 10 + 0.5×Wi +Xi + εi,

where εi ∼ N (0, 1).

In this example:

I The true ATE is 0.5—it does not vary depending on X.

I However, some of the variation in Yi’s is explained the X’s as
well.
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Controlling for observables: An example

Suppose we regress Y on the treatment indicator W alone:

Call:

lm(formula = Y ~ 1 + W, data = df)

...

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 9.9807 0.1168 85.45 < 2e-16 ***

W1 0.4608 0.1652 2.79 0.00561 **
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Controlling for observables: An example

Now suppose we include the covariate X in the regression:

Call:

lm(formula = Y ~ 1 + W + X, data = df)

...

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 9.91498 0.08688 114.123 < 2e-16 ***

W1 0.61827 0.12314 5.021 8.88e-07 ***

X 1.01032 0.06483 15.584 < 2e-16 ***

Notice that the standard error is smaller on the coefficient of W .
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Controlling for observables: Interpretation

In the specification Y ~ 1 + W + X, we still interpret the
coefficient on W as an estimate of the population-level ATE.

The point is that adding X to the regression gives us a better
estimate of the baseline Y (0) for each individual.

Essentially, this regression says that for an individual with covariate
X:

I Y (0) ≈ β̂0 + β̂2X.

I Y (1) ≈ β̂0 + β̂1 + β̂2X.
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Controlling for observables

Controlling for observed covariates has another effect as well:

If the randomization was less than perfect, controlling for observed
covariates can reduce the sampling bias.

How this works:

I Suppose, e.g., individuals with higher X were more likely to
receive the treatment.

I Ignoring this fact will lead to a biased estimate of the ATE:
part of the variation in the observed Y ’s is explained by
variation in the X’s, not by the variation in the treatment.
(This is an omitted variable bias.)

I Controlling for X removes the omitted variable bias.

What are the limitations to this process?
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Interactions

The preceding slides suggest one limitation of merely controlling
for observed covariates:

What if the treatment effect itself varies depending on the
covariates observed?

To address this issue we employ interactions with the treatment
indicator.
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Interactions

Suppose given a covariate X, we add the interaction term W ×X
to the model:

Yi ≈ β̂0 + β̂WWi + β̂XXi + β̂WXWiXi.

With the addition of this term we can interpret the model as
follows:

For an individual with covariate X,

I Y (0) ≈ β̂0 + β̂XX.

I Y (1) ≈ β̂0 + β̂W + (β̂X + β̂WX)X.

I The estimated causal effect is ≈ β̂W + β̂WXX.

This allows us to measure heterogeneous treatment effects across
the population.
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Interactions: Example

In the earlier example, there should be no meaningful change in the
treatment effect across individuals with different X’s.

Call:

lm(formula = Y ~ 1 + W + X + X * W, data = df)

...

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 9.91161 0.08705 113.860 < 2e-16 ***

W1 0.61730 0.12323 5.009 9.4e-07 ***

X 1.06204 0.09365 11.340 < 2e-16 ***

W1:X -0.09945 0.12986 -0.766 0.444
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Interactions: Example

Now suppose we change the model so that in the population,
changing X also changes the treatment effect.

In particular, suppose:

Yi = 10 + (0.5 +Xi)Wi +Xi + εi,

where εi ∼ N (0, 1).

What happens when we estimate a model with interactions on the
resulting experimental data?
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Interactions: Example

The result:

Call:

lm(formula = Y ~ 1 + W + X + X * W, data = df)

Residuals:

Min 1Q Median 3Q Max

-2.32757 -0.73146 0.05078 0.62216 2.85012

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 10.02695 0.08510 117.827 < 2e-16 ***

W1 0.51447 0.12047 4.271 2.63e-05 ***

X 1.06476 0.09155 11.630 < 2e-16 ***

W1:X 0.86899 0.12695 6.845 4.40e-11 ***
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SUTVA and interference
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Interference

Implicitly throughout our discussion of causal inference, we have
assumed there is no interference between treatment and control:

Whether or not individual i receives treatment or control has no
impact on the causal effect of treatment on another individual j.

When might this fail?
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Interference

Suppose Airbnb decides to A/B test a new feature that
dramatically simplifies the booking process for a guest.

In the test, guests are randomized at when they start the booking
process; control is the old experience, treatment is the new
experience.

It is found that customers with the new experience book much
more frequently than customers with the old experience, but the
estimated ÂTE is an overestimate. Why?
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Interference

Both treatment and control see the same inventory of host listings!

So if treatment individuals book more often, that reduces the
inventory available to control individuals, and implies their booking
rates will be lower.
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SUTVA

If interference is present, the “potential outcomes” for an
individual are much more complicated: they depend on not just the
treatment a single individual received, but also on the treatment
other individuals received.

With n individuals, this is 2n potential outcomes for each
individual!

The assumption that there is no interference between treatment
and control is part of the stable unit treatment value assumpton
(SUTVA) in econometrics and causal inference.

The other part of SUTVA is that there is only one form of
treatment or control: e.g., if treatment is “taking a drug”, there
should be no variation in the treatment group as to how much of
the drug is taken.
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Paradoxes
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A puzzle

A new treatment for a disease is introduced, and compared against
the existing standard of care (control).

Let W = 0, 1 denote control or treatment, respectively.

Let Y = 0, 1 denote the outcome disease or no disease,
respectively.

Let Z be the gender of the indivdual (M or F ).
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A puzzle

You run an experiment with a large sample size, and equal
numbers of men and women.

Men Women
No disease Disease No disease Disease

(Y = 1) (Y = 0) (Y = 1) (Y = 0)

Treatment (W = 1) 0.1500 0.2250 0.1000 0.0250

Control (W = 0) 0.0375 0.0875 0.2625 0.1125

(Here the numbers are the fractions of individuals in each
category.)
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A puzzle

Analyzing the results:

I On average, P(Y = 1|W = 1) = 0.5 while
P(Y = 1|W = 0) = 0.6, so the treatment appears
detrimental.

I On the other hand, P(Y = 1|W = 1, Z =M) = 0.4, while
P(Y = 1|W = 0, Z =M) = 0.3, so the treatment appears to
be beneficial to men.

I In addition, P(Y = 1|W = 1, Z = F ) = 0.8, while
P(Y = 1|W = 0, Z = F ) = 0.7, so the treatment appears to
also be beneficial to women as well!

What happened? (This is called Simpson’s paradox.)
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Potential outcomes, causal effects, and sampling
bias

Each man and woman has two potential outcomes Y (0) and Y (1),
associated to control and treatment, respectively.

If we presume there was no sampling bias among men, (so W is
uncorrelated with Y given Z =M) then the average causal effect
among men is:

E[Y (1)− Y (0)|Z =M ]

= E[Y (1)|Z =M,W = 1]− E[Y (0)|Z =M,W = 0]

= P(Y = 1|Z =M,W = 1)− P(Y = 1|Z =M,W = 0)

= 0.1

Similarly the average causal effect among women is
E[Y (1)− Y (0)|Z = F ] = 0.1.
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Potential outcomes, causal effects, and sampling
bias

So what is the average causal effect overall?

E[Y (1)− Y (0)]

= E[Y (1)− Y (0)|Z =M ]P(Z =M)

+ E[Y (1)− Y (0)|Z = F ]P(Z = F )

= 0.1

So there is no paradox: if the causal effect for men and women is
separately positive, it must be positive overall.
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Potential outcomes, causal effects, and sampling
bias

The issue is that in this example:

E[Y (1)− Y (0)] 6= E[Y (1)|W = 1]− E[Y (0)|W = 0].

The reason is that if we ignore gender, there is a sampling bias:

I Women are more likely to be in control than treatment; men
are more likely to be in treatment than control.

I And women have higher potential outcomes on average than
men: the average outcome of a woman in treatment (resp.
control) is 0.8 (resp., 0.7), while the same for a man in
treatment is 0.4 (resp., 0.3).

I This combination of effects lowers the average outcome in the
treatment group relative to the overall population (since the
treatment group is primarily men), and raises the average
outcome in the control group relative to the overall population
(since the control group is primarily women).
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Potential outcomes, causal effects, and sampling
bias

The preceding analysis shows that ignoring gender creates an
omitted variable bias in our estimate of the average treatment
effect.

Note that we assumed no further sampling bias beyond gender; the
example makes clear that any such bias would only further cloud
the true causal effect.
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Another example: Berkeley admissions

Berkeley was sued for gender bias in admissions based on 1973
statistics: 44% of men were admitted, while only 35% of women
were admitted.

But based on individual departments’ admissions statistics, there
did not appear to be statistically significant gender-based
discrimination (in fact if anything, some departments tended to
favor women).

What happened is that there was a sampling bias: women were
systematically applying to majors that were much more
competitive.
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The moral

This example is meant to illustrate how to use potential outcomes
to carefully describe the causal effect of interest.

Perfect randomization makes up for a lot of deficiencies, but
sometimes things are less than perfect.

Taking care to think through potential outcomes and sampling bias
carefully can help avoid incorrect inference!
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Observational data
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Natural experiments

How can we make causal inferences without randomized
experiments?

As the preceding lecture shows, we need to find other ways to
eliminate sampling bias.

The phrase “natural experiment” refers to the fact that we look for
structure in the data we are given that “mimics” an experiment we
would have wanted to conduct.
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Examples

Some examples include:

I Regression discontinuity analysis

I Propensity score matching

I Instrumental variables
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