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Frequentist vs. Bayesian inference

I Frequentists treat the parameters as fixed (deterministic).
I Considers the training data to be a random draw from the

population model.
I Uncertainty in estimates is quantified through the sampling

distribution: what is seen if the estimation procedure is
repeated over and over again, over many sets of training data
(“parallel universes”).

I Bayesians treat the parameters as random.
I Key element is a prior distribution on the parameters.
I Using Bayes’ theorem, combine prior with data to obtain a

posterior distribution on the parameters.
I Uncertainty in estimates is quantified through the posterior

distribution.
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Bayes’ rule: Discrete case

Suppose that we generate discrete data Y1, . . . , Yn, given a
parameter θ that can take one of finitely many values.

Recall that the distribution of the data given θ is the likelihood
P(Y = y|θ = t).

The Bayesian adds to this a prior distribution P(θ = t), expressing
the belief that θ takes on a given value. Then Bayes’ rule says:

P(θ = t|Y = y) =
P(θ = t,Y = y)

P(Y = y)

=
P(Y = y|θ = t)P(θ = t)

P(Y = y)
.

=
P(Y = y|θ = t)P(θ = t)∑
τ P(Y = y|θ = τ)P(θ = τ)

.
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Bayes’ rule: Continuous case

If data and/or parameters are continuous, we use densities instead
of distributions. E.g., if both data and parameters are continuous,
Bayes’ rule says:

f(θ|Y) =
f(Y|θ)f(θ)

f(Y)
,

where

f(Y) =

∫
f(Y|θ̃)f(θ̃)dθ̃.
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Bayes’ rule: In words

The posterior is the distribution of the parameter, given the data.

Bayes’ rule says:

posterior ∝ likelihood× prior.

Here “∝” means “proportional to”; the missing constant is
1/f(Y), the unconditional probability of the data.

Note that this constant does not depend on the parameter θ.
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Example: Biased coin flipping

We flip a biased coin 5 times, and get H,H, T,H, T . What is your
estimate of the bias q?

A Bayesian starts with a prior for q: f(q) (pdf).

This is combined with th likelihood of the data, given q. In our
example:

likelihood given q = P(Y|q) = q3(1− q)2.

The posterior is the distribution of q, given the data we saw; we
get this using Bayes’ rule:

f(q|Y) =
P(Y|q)f(q)∫ 1

0 P(Y|q′)f(q′)dq′
.
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Example: Biased coin flipping

As an example, suppose that f(q) was the uniform distribution on
[0, 1].

Then the posterior after n flips with k H’s and n− k T ’s is:

f(q|Y) =
1

B(k + 1, n− k + 1)
qk(1− q)n−k,

the Beta(k + 1, n− k + 1) distribution.

In fact: if the prior is a Beta(a, b) distribution, the posterior is a
Beta(a+ k, b+ n− k) distribution.1 (The uniform distribution is a
Beta(1, 1) distribution.

1We say the beta distribution (the prior on the parameter) is conjugate to
the binomial distribution (the likelihood).
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Bayesian inference
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The goals of inference

Recall the two main goals of inference:

I What is a good guess of the population model (the true
parameters)?

I How do I quantify my uncertainty in the guess?

Bayesian inference answers both questions directly through the
posterior.

10 / 35



Using the posterior

The posterior can be used in many ways to estimate the
parameters. For example, you might compute:

I The mean

I The median

I The mode

I etc.

Depending on context, these are all potentially useful ways to
estimate model parameters from a posterior.
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Using the posterior

In the same way, it is possible to construct intervals from the
posterior. These are called credible intervals (in contrast to
“confidence” intervals in frequentist inference).

Given a posterior distribution on a parameter θ, a 1− α credible
interval [L,U ] is an interval such that:

P(L ≤ θ ≤ U |Y) ≥ 1− α.

Note that here, in contrast to frequentist confidence intervals, the
endpoints L and U are fixed and the parameter θ is random!
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Using the posterior

More generally, because the posterior is a full distribution on the
parameters, it is possible to make all sorts of probabilistic
statements about their values, for example:

I “I am 95% sure that the true parameter is bigger than 0.5.”

I “There is a 50% chance that θ1 is larger than θ2.

I etc.

In Bayesian inference, you should not limit yourself to just point
estimates and intervals; visualization of the posterior distribution is
often quite valuable and yields significant insight.
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Example: Biased coin flipping

Recall that with a Beta(a, b) prior on q, the posterior (with k
heads and n− k tails) is Beta(a+ k, b+ n− k).

The mode of this distribution is q̂ = a+k−1
a+b+n−2 .

Recall that the MLE is k/n, and the mode of the Beta(a, b) prior
is (a− 1)/(a+ b− 2). So in this case we can also write:

posterior mode = cnMLE + (1− cn)(prior mode),

where:
cn =

n

a+ b+ n− 2
.
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Bayesian estimation and the MLE

The preceding example suggests a close connection between
Bayesian estimation and the MLE. This is easier to see by recalling
that:

posterior ∝ likelihood× prior.

So if the prior is flat (i.e., uniform), then the parameter estimate
that maximizes the posterior (the mode, also called the maximum
a posteriori estimate or MAP) is the same as the maximum
likelihood estimate.

In general:

I Uniform priors may not make sense (because, e.g., the
parameter space is unbounded).

I A non-uniform prior will make the MAP estimate different
from the MLE.
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Example: Normal data

Suppose that Y1, . . . , Yn are i.i.d. N (µ, 1). Suppose a prior on µ is
that µ ∼ N (a, b2). Then it can be shown that the posterior for µ
is N (â, b̂2), where:

â = cnY + (1− cn)a;

b̂2 =
1

n+ 1/b2
;

cn =
n

n+ 1/b2
.

So the MAP estimate is â; and a 95% credible interval for µ is
[â− 1.96b̂, â+ 1.96b̂].

Note that for large n, â ≈ Y , and b̂ ≈ 1/
√
n = SE, the frequentist

standard error of the MLE.
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Example: Normal data
A picture:
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Maximum likelihood and Bayesian inference

The preceding observations are more general.

If the prior is “reasonable” then the posterior is asymptotically
normal, with mean that is the MLE θ̂MLE, and variance that is

ŜE
2
, where ŜE is the standard error of the MLE.

So for example:

I In large samples, the posterior mean (or mode) and the MLE
coincide.

I In large samples, the 1− α normal (frequentist) confidence
interval is the same as the the 1− α (Bayesian) credible
interval.
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Choosing the prior
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Where did the prior come from?

There are two schools of thought on the prior:
I Subjective Bayesian

I The prior is a summary of our subjective beliefs about the data.
I E.g., in the coin flipping example: the prior for q should be

strongly peaked around 1/2.

I Objective Bayesian
I The prior should be chosen in a way that is “uninformed”.
I E.g., in the coin flipping example: the prior should be uniform

on [0, 1].

Objective Bayesian inference was a response to the basic criticism
that subjectivity should not enter into scientific conclusions.
(Worth considering whether this is appropriate in a business
context...)
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Objectivism: Flat priors

A flat prior is a uniform prior on the parameter: f(θ) is constant.

As noted this doesn’t make sense when θ can be unbounded...or
does it?
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Example: Normal data

Suppose again that Y1, . . . , Yn are i.i.d. N (µ, 1), but that now we
use a “prior” f(µ) ≡ 1.

Of course this prior is not a probability distribution, but it turns
out that we can still formally carry out the calculation of a
posterior, as follows:

I The product of the likelihood and the prior is just the
likelihood.

I If we can normalize the likelihood to be a probability
distribution over µ, then this will be a well-defined posterior.

Note that in this case the posterior is just a scaled version of
likelihood, so the MAP estimate (posterior mode) is exactly the
same as the MLE!
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Improper priors

This example is one where the flat prior is improper: it is not a
probability distribution on its own, but yields a well-defined
posterior.

Flat priors are sometimes held up as evidence of why Bayesian
estimates are at least as informative as frequentist estimates, since
at worst by using a flat prior we can recover maximum likelihood
estimation.

Another way to interpret this is as a form of conservatism: The
most conservative thing to do is to assume you have no knowledge,
except what is in the data; this is what the flat prior is meant to
encode.
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Jeffreys’ priors [∗]

But flat priors can also lead to some unusual behavior. For
example, suppose we place a flat prior on µ. What is our prior on,
e.g., µ3? It is not flat:

f(µ3) =
f(µ)

3µ2
=

1

3µ2
.

This is strange: if we have no information about µ, we should have
no information about µ3. Even worse, this prior is not even
positive if µ < 0!

The problem is that flat priors are not invariant to transformations
of the parameter.

Jeffreys showed that a reasonble uninformative prior that is also
transformation invariant is obtained by setting f(θ) to the inverse
of the Fisher information at θ; see [AoS], Section 11.6.
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Applications
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Bayesian linear regression

Assume a linear normal model Yi = ~Xβ + εi, where the εi are
N (0, σ2).

In Bayesian linear regression, we also put a prior distribution on β.

Here we look at two examples of this approach.
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Bayesian linear regression: Normal prior

Suppose that the prior distribution on the coefficients β is:

β ∼ N
(
0,

1

λσ2
I

)
.

In other words: the higher λ is, the higher the prior “belief” that β
is close to zero.2

For this prior, the MAP estimator is the same as the ridge
regression solution.

2Note that this is a “partial” Bayesian solution, since σ2 is assumed known.
In practice an estimate of σ2 is used.
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Bayesian linear regression: Laplace prior

Now suppose instead that the prior is that all the βj are
independent, each with density:

f(β) =

(
λ

2σ

)
exp

(
−λ|β|

σ

)
.

This is called the Laplace distribution; it is symmetric around zero,
and more strongly peaked as λ grows.3

With this prior, the MAP estimator is the same as the lasso
solution.

3Note that this is again a solution that assumes σ2 is known. In practice an
estimate of σ2 is used.
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Bayesian model selection

The BIC (Bayesian information criterion) is obtained from a
Bayesian view of model selection.

Basic idea:

I Imagine there is a prior over possible models.

I We would want to choose the model that has the highest
posterior probability.

I In large samples, the effect of this prior becomes small relative
to the effect of the data, so asymptotically BIC estimates the
posterior probability of a model by (essentially) ignoring the
effect of the prior.

I Choosing the model that maximizes BIC is like choosing the
model that has the highest posterior probability in this sense.
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Concluding thoughts
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Computation

Even simple Bayesian inference problems can rapidly become
computationally intractable: computing the posterior is often not
straightforward.

The last few decades have seen a revolution in computational
methods for Bayesian statistics, headlined by Markov chain Monte
Carlo (MCMC) techniques for estimating the posterior.

Though not perfect, these advances mean that you don’t need to
consider computational advantages when choosing one approach
over another.
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When do Bayesian methods work well?

Bayesian methods work well, quite simply, when prior information
matters.

An example with biased coin flipping: if a perfectly normal coin is
flipped 10 times, with 8 heads, what is your guess of the bias?

I A frequentist would say 0.8.

I A Bayesian would likely use a prior that is very strongly
peaked around 0.5, so the new evidence from just ten flips
would not change her belief very much.
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When do Bayesian methods work poorly?

Analogously, Bayesian methods work poorly when the prior is
poorly chosen.

For example, suppose you try out a new promotion on a collection
of potential customers.

Previous promotions may have failed spectacularly, leading you to
be pessimistic as a Bayesian.

However, as a consequence, you will be more unlikely to detect an
objectively successful experiment.
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Combining methods

A good frequentist estimation procedure:

I Uses only the data for inferences

I Provides guarantees on how the procedure will perform, if
repeatedly used

A good Bayesian estimation procedure:

I Leverages available prior information effectively

I Combines prior information and the data into a single
distribution (the posterior)

I Ensures the choice of estimate is “optimal” given the
posterior (e.g., maximum a posteriori estimation)
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Combining methods

It is often valuable to:

I Ask that Bayesian methods have good frequentist properties

I Ask that estimates computed by frequentist methods “make
sense” given prior understanding

Having both approaches in your toolkit is useful for this reason.
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