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The likelihood function
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Estimating the parameter

This lecture develops the methodology behind the maximum
likelihood approach to parameter estimation.

Basic idea:

I In guessing what the parameters are, we first ask: what is the
chance of seeing the data we observe, given a particular value
of the parameter?

I We then pick the parameter values that maximize this chance.
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Example 1: Flipping a biased coin

Suppose we flip a coin n times, and get observations
Y = (Y1, . . . , Yn).

If the bias on the coin was q, what is the probability we get data
Y?

This is the likelihood of Y given q:

f(Y|q) =
n∏

i=1

qYi(1− q)1−Yi .
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Example 2: Linear normal population model

Suppose that you are given p-dimensional covariate vectors Xi,
i = 1, . . . n, together with corresponding observations Yi,
i = 1, . . . , n.

Suppose you assume the linear normal population model with
i.i.d. errors:

Yi = Xiβ + εi,

where εi ∼ N (0, σ2), and the εi are i.i.d.

What are the parameters? What is the likelihood?
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Example 2: Linear normal population model

Parameters are β and σ2.

In deriving likelihood, we will typically treat X as given; i.e., we
focus on inference about the relationship between X and Y, rather
than the distribution of X.

Likelihood is probability density of seeing Y, given parameters and
X:

f(Y|β, σ2,X) =

n∏
i=1

(
1√
2πσ2

)
exp

(
−(Yi −Xiβ)

2

2σ2

)
.
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Example 2: Linear normal population model
Derivation of the likelihood:
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In general: Parametric likelihood

In general, suppose there is some process that generates data Y.1

Suppose each choice of a parameter vector θ gives rise to a
conditional pmf (or pdf) f(Y|θ).

This is the probability (or density) of seeing Y, given parameters θ.

We call this the likelihood of Y given θ.

1As noted on the previous slide, in the case of regression, we treat X as
given and look at the process that generates Y from X.
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Log likelihood

It is often easier to work with logs when taking likelihoods (not
least because multiplying many small probabilities together can
cause numerical instability).

We call this the log likelihood function (LLF).

Example 1 (biased coin):

log f(Y|q) =
n∑

i=1

Yi log q + (1− Yi) log(1− q).

Example 2 (linear normal population model):

log f(Y|β, σ2,X) = −n
2
log(2πσ2)− 1

2σ2

n∑
i=1

(Yi −Xiβ)
2.
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Maximum likelihood
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Maximizing the log likelihood

The maximum likelihood estimate (MLE) is the parameter value
that maximizes the likelihood.

It is found by solving the following optimization problem:

maximize f(Y|θ) (or log f(Y|θ))
over feasible choices of θ.

We denote the resulting solution by θ̂MLE.
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Example 1: Flipping a biased coin

Suppose we maximize the log likelihood. The resulting solution is:

q̂MLE =
1

n

n∑
i=1

Yi = Y .

This is fairly reasonable: we estimate q by the mean number of
successes.
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Example 1: Flipping a biased coin
Derivation of the MLE estimate:
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Example 2: Linear normal model, known σ2

Suppose that σ2 is known, so the goal is to estimate β. Returning
to LLF, our problem is equivalent to choosing β̂ to minimize:

minimize
n∑

i=1

(Yi −Xiβ̂)
2.

In other words: the OLS solution is the MLE estimate of the
coefficients!
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Example 2: Linear normal model, known σ2

Let’s pause to reflect on what we’ve found here.

When we first discussed OLS, we did so from a purely algebraic
view — no assumptions.

When we discussed prediction, we showed that as long as the
population model is linear and the εi are uncorrelated with Xi,
then OLS is unbiased, and has minimum variance among unbiased
linear estimators (Gauss-Markov theorem).

Now, we have shown that in addition if we assume the εi are
i.i.d. normal random variables, then OLS is the maximum
likelihood estimate.
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Example 2: Linear normal model, unknown σ2

What happens if σ2 is unknown?

The MLE for β remains unchanged (the OLS solution), and the
MLE estimate for σ2 is:

σ̂2MLE =
1

n

n∑
i=1

(Yi −Xiβ̂)
2 =

1

n

n∑
i=1

r2i .

This is intuitive: the sum of squared residuals is an estimate of the
variance of the error.
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Example 3: Logistic regression

The logistic regression parameters are found through maximum
likelihood.

The (conditional) likelihood for Y given X and parameters β is:

P(Y|β,X) =

n∏
i=1

g−1(Xiβ)
Yi(1− g−1(Xiβ))

1−Yi

where g−1(z) = exp(z)/(1 + exp(z)).
Let β̂MLE be the resulting solution; these are the logistic regression
coefficients.
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Example 3: Logistic regression [∗]

Unfortunately, in contrast to our previous examples, maximum
likelihood estimation does not have a closed form solution in the
case of logistic regression.

However, it turns out that there are reasonably efficient iterative
methods for algorithmically computing the MLE solution.

One example is an algorithm inspired by weighted least squares,
called iteratively reweighted least squares. This algorithm
iteratively updates the weights in WLS to converge to the logistic
regression MLE solution. See [AoS], Section 13.7 for details.
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