Distributed Computing with Spark

Reza Zadeh ==

- : DATABRICKS
B &
ME
INSTITUTE for COMPUTATIONAL &

MATHEMATICAL ENGINEERING S QrK
at STANFORD UNIVERSITY

Thanks to Matei Zaharia

Problem

Data growing faster than processing speeds

Only solution is to parallelize on large clusters
» \Wide use in both enterprises and web industry

Outline

Data flow vs. traditional network programming
Limitations of MapReduce

Spark computing engine

Machine Learning Example

Current State of Spark Ecosystem

Built-in Libraries

Data flow vs. traditional network programming

Traditional Network Programming

Message-passing between nodes (e.g. MPI)

Very difficult to do at scale:
» How to split problem across nodes”?
* Must consider network & data locality
» How to deal with failures? (inevitable at scale)
» Even worse: stragglers (node not failed, but slow)
» Ethernet networking not fast
» Have to write programs for each machine

Rarely used in commodity datacenters

Data Flow Models

Restrict the programming interface so that the
system can do more automatically

Express jobs as graphs of high-level operators
» System picks how to split each operator into tasks
and where to run each task
» Run parts twice fault recovery

Biggest example: MapReduce %

Example MapReduce Algorithms

Matrix-vector multiplication
Power iteration (e.g. PageRank)
Gradient descent methods
Stochastic SVD

Tall skinny QR

Many others!

Why Use a Data Flow Engine”

Ease of programming
» High-level functions instead of message passing

Wide deployment

» More common than MPI, especially “near” data

Scalability to very largest clusters
» Even HPC world is now concerned about resilience

Examples: Pig, Hive, Scalding, Storm

Limitations of MapReduce

Limitations of MapReduce

MapReduce is great at one-pass computation,
out inefficient for multi-pass algorithms

No efficient primitives for data sharing
» State between steps goes to distributed file system
» Slow due to replication & disk storage

Example: lterative Apps

file system file system file system file system
read write read write
Y Y
Input
file system result 1
read

result 2
result 3

[Commonly spend 90% of time doing |/O 1

Example: PageRank

Repeatedly multiply sparse matrix and vector

Requires repeatedly hashing together page

adjacency lists and rank vector

Same file grouped
over and over

Neighbors
(id, edges)

Ranks
(id, rank) .

iteration 1 iteration 2 iteration 3

Result

While MapReduce is simple, it can require
asymptotically more communication or [/O

Spark computing engine

Spark Computing Engine

Extends a programming language with a

distributed collection data-structure
» “Resilient distributed datasets” (RDD)

Open source at Apache
» Most active community in big data, with 50+
companies contributing

Clean APIs in Java, Scala, Python, R

Resllient

Distributed

Datasets (

q

Main idea: Resilient Distributed Datasets
» Immutable collections of objects, spread across cluster
» Statically typed: RDD[T] has objects of type T

val sc = new SparkContext()

val lines = sc.textFile("log.txt")

//

//

val errors = lines.filter(_.startsWith("ERROR"))

val messages = errors.map(_.split(‘\t")(2))

messages.saveAsTextFile("errors.txt")

BS)

lazily evaluated

kicks off a computation

Key ldea

Resilient Distributed Datasets (RDDs)
» Collections of objects across a cluster with user
controlled partitioning & storage (memory, disk, ...)
» Built via parallel transformations (map, filter, ...)
» The world only lets you make make RDDs such that
they can be:

Automatically rebuilt on failure

Python, Java, Scala, R

// Scala:

val lines = sc.textFile(...)
Tines.filter(x => x.contains(“ERROR”)).count()

// Java:

JavaRDD<String> lines = sc.textFile(...);
lines.filter(new Function<String, Boolean>() {
Boolean call(String s) {
return s.contains(“error”);
}

}).count(Q);

Fault Tolerance

RDDs track lineage info to rebuild lost data

file.map(lambda rec: (rec.type, 1))
.reduceByKey(lambda x, y: X + y)
.filter(lambda (type, count): count > 10)

reduce filter

Input file

.....
SISIS
SIS

Isr=
SES
SIS

N
H 1)
S
SIS

SiSIE

Fault Tolerance

RDDs track lineage info to rebuild lost data

file.map(lambda rec: (rec.type, 1))
.reduceByKey(lambda x, y: x + y)
.filter(lambda (type, count): count > 10)

reduce filter

Input file

-
T

EISH

ESIR
ESIS
e

I\
=)
==
NS
-
SIS
et

H
=]
BSS

Sis

Partitioning

RDDs know their partitioning functions

file.map(lambda rec: (rec.type, 1))
.reduceByKey(lambda x, y: X + y) Known to be

.filter(lambda (type, count): count > 10) hash-partitioned

‘{/ﬂﬁ;y Akx>t;?wm

reduce

Input file

nnnnn
SISIS
SISIE

bt
BiES
=~

H 11N
IEISIAN
)
EISIS

SEE

Machine Learning example

Logistic Regression

wew—a- Yy gw;zi, y;)

=1

val points = spark.textFile(...).map(parsePoint).cache()
var w = Vector.zeros(d)

for (i1 <- 1 to numlIterations) {
val gradient = points.map { p =>
(1 /7 (1 + exp(-p.y * w.dot(p.x)) - 1) * p.y * p.X
).reduce(_ + _)
w -= alpha * gradient

}

L ogistic Regression Results

4000

3500
& 3000
2500
=, 2000
1500
1000
500

0

ime

Runnin

1 5 10 20
Number of lterations

100 GB of data on 50 m1.xlarge EC2 machines

110 s/ iteration

/

Hadoop
W Spark

\

first iteration 80 s
further iterations 1 s

30

Behavior with Less RAM

100

lteration time (S)
EAN @)) Qo
- - -

N
@)

@)

H68.8

0%

— 58.1

— 40.7

25% 50% 5%
% of working set in memory

100%

Benefit for Users

Same engine performs data extraction, model
training and interactive queries

Separate engines

train

Spark sl @ python
_ EScala

parse
train
w,
1
wn

State of the Spark ecosystem

Spark Community

Most active open source community in big data

200+ developers, 50+ companies contributing

YAHOO! ¢inied TAY 2

Adobe

@ rednat ' amazon b A
webservices™
cloudera oatasTAX:

mzee €2 (ClearStory webtrends

Alibaba.com

DATABRICKS

bize con

150

100

50

Contributors in past year

Project Activity

1600 < 350000 =
@ Q
Q
3 %)
1400 300000
1200 250000
1000
200000
800 ép)
o € 150000
600 Q- T 5
S N
e
400 3 < 100000
Q
000 = 50000 -
0 - 0 -
Commits Lines of Code Changed

Activity in past 6 months

Continuing Growth

/5
50

25

W ——
2011 2012 2013 2014

Contributors per month to Spark

source: ohloh.net

Built-in libraries

Standard Library for Big Data

Python Scala Java R
Big data apps lack libraries

of common algorithms

SQL | ML Hgraph

Spark’s generality + support
for multiple languages make
suitable to offer this

Much of future activity will be in these libraries

A General Platform

Standard libraries included with Spark

Spark MLIib
Streaming machine
real-time learning

Spark SQL

structured

Spark Core

Machine Learning Library (MLIib)

points = context.sql(“select latitude, longitude from tweets”)

model = KMeans.train(points, 10)

40 contributors In

past year

MLIIb algorithms

classification: logistic regression, linear SVM,
nalve Bayes, classification tree

regression: generalized linear models (GLMs),
regression tree

collaborative filtering: alternating least squares (ALS),
non-negative matrix factorization (NMF)

clustering: k-means||
decomposition: SVD, PCA
optimization: stochastic gradient descent, L-BFGS

GraphX

Preprocessing Compute Post Proc.

(. 3\
GraphlLab® “

</>

Compute

Inrtial

, Subgraph | PageRank | Top
. Graph

GraphX

General graph processing library
Build graph using RDDs of nodes and edges

Large library of graph algorithms with
composable steps

GraphX Algorithms

Collaborative Filtering Community Detection
» Alternating Least Squares » Triangle-Counting
» Stochastic Gradient Descent » K-core Decomposition
» lensor Factorization » K-Truss

Structured Prediction Graph Analytics
» Loopy Belief Propagation » PageRank
» Max-Product Linear Programs » Personalized PageRank
» Gibbs Sampling » Shortest Path

» Graph Coloring

Semi-supervised ML -
» Graph SSL Classification

» CoEM » Neural Networks

Spark Streaming

Run a streaming computation as a series
of very small, deterministic batch jobs

live data stream

e Chop up the live stream into batches of

X seconds
e Spark treats each batch of data as batches(;)f X
RDDs and processes them using RDD Seeonds
operations
* Finally, the processed results of the <:] | rolclesséclj ' Spark
RDD operations are returned in P cesults

batches

Spark Streaming

Run a streaming computation as a series
of very small, deterministic batch jobs

live data stream

 Batchssizes as low as %2 second, latency

~ 1 second
* Potential for combining batch batches(;)f X
processing and streaming processing in Seconas
the same system
Spark
processed

results

Spark SQL

// Run SQL statements

val teenagers = context.sql(
"SELECT name FROM people WHERE age >= 13 AND age <= 19")

// The results of SQL queries are RDDs of Row objects
val names = teenagers.map(t => "Name: " + t(0)).collect()

Spark SQL

Enables loading & querying structured data in Spark

From Hive:

c = HiveContext(sc)

rows = c.sql(“select text, year from hivetable”)
rows.filter(lambda r: r.year > 2013).collect()

From JSON: }WGGTS.JSOI’]

' ' i - {“text”: “hi”,
c.jsonFile(“tweets.json”).registerAsTable(“tweets”) “user”: {1
c.sql(“select text, user.name from tweets”) :ng?élgmmeVﬂ

1}

Conclusions

Spark and Research

Spark has all its roots in research, so we hope
to keep incorporating new ideas!

Conclusion

Data flow engines are becoming an important
platform for numerical algorithms

While early models like MapReduce were

iInefficient, new ones |i

More info: spark.apac

Ne.0org

Spa

Ke Spark close this gap

K

r

Class Schedule

Schedule

oday and tomorrow

Hands-on exercises, download course
materials and slides:
http://stanford.edu/~rezab/sparkclass/

Friday

Advanced talks on Spark libraries and uses

