
Reza Zadeh

Advanced Data Science on Spark

@Reza_Zadeh | http://reza-zadeh.com

Data Science Problem

Data growing faster than processing speeds

Only solution is to parallelize on large clusters

» Wide use in both enterprises and web industry

How do we program these things?

Use a Cluster

Convex Optimization

Matrix Factorization

Machine Learning

Numerical Linear Algebra

Large Graph analysis

Streaming and online
algorithms

Following	
 lectures	
 on	
 http://stanford.edu/~rezab/dao	

	
 	

	

Outline

Data Flow Engines and Spark

The Three Dimensions of Machine Learning

Communication Patterns

Advanced Optimization

State of Spark Ecosystem

Traditional Network Programming

Message-passing between nodes (e.g. MPI)

Very difficult to do at scale:

» How to split problem across nodes?

•  Must consider network & data locality

» How to deal with failures? (inevitable at scale)

» Even worse: stragglers (node not failed, but slow)

» Ethernet networking not fast

» Have to write programs for each machine

Rarely used in commodity datacenters

Disk vs Memory

L1 cache reference:

0.5 ns

L2 cache reference:

7 ns

Mutex lock/unlock:

100 ns

Main memory reference:
100 ns

Disk seek:

10,000,000 ns

Network vs Local

Send 2K bytes over 1 Gbps network:

20,000 ns

Read 1 MB sequentially from memory:
250,000 ns

Round trip within same datacenter:

500,000 ns

Read 1 MB sequentially from network:
10,000,000 ns

Read 1 MB sequentially from disk:

30,000,000 ns

Send packet CA->Netherlands->CA:

150,000,000 ns

Data Flow Models

Restrict the programming interface so that the
system can do more automatically

Express jobs as graphs of high-level operators

» System picks how to split each operator into tasks

and where to run each task

» Run parts twice fault recovery

Biggest example: MapReduce

Map

Map

Map

Reduce

Reduce

iter. 1
 iter. 2
 . . .

Input

file system"
read

file system"
write

file system"
read

file system"
write

Input

query 1

query 2

query 3

result 1

result 2

result 3

. . .

file system"
read

Commonly spend 90% of time doing I/O

Example: Iterative Apps

MapReduce evolved

MapReduce is great at one-pass computation,
but inefficient for multi-pass algorithms

No efficient primitives for data sharing

» State between steps goes to distributed file system

» Slow due to replication & disk storage

Verdict

MapReduce algorithms research doesn’t go
to waste, it just gets sped up and easier to
use

Still useful to study as an algorithmic
framework, silly to use directly

Spark Computing Engine

Extends a programming language with a
distributed collection data-structure

» “Resilient distributed datasets” (RDD)

Open source at Apache

» Most active community in big data, with 50+

companies contributing

Clean APIs in Java, Scala, Python

Community: SparkR, being released in 1.4!

Key Idea

Resilient Distributed Datasets (RDDs)

» Collections of objects across a cluster with user

controlled partitioning & storage (memory, disk, ...)

» Built via parallel transformations (map, filter, …)

» The world only lets you make make RDDs such that

they can be:

Automatically rebuilt on failure

Resilient Distributed Datasets (RDDs)

Main idea: Resilient Distributed Datasets

»  Immutable collections of objects, spread across cluster

» Statically typed: RDD[T] has objects of type T

val sc = new SparkContext()!
val lines = sc.textFile("log.txt") // RDD[String]!
!
// Transform using standard collection operations !
val errors = lines.filter(_.startsWith("ERROR")) !
val messages = errors.map(_.split(‘\t’)(2)) !
!
messages.saveAsTextFile("errors.txt") !

lazily evaluated

kicks off a computation

MLlib: Available algorithms

classification: logistic regression, linear SVM,"
naïve Bayes, least squares, classification tree

regression: generalized linear models (GLMs),
regression tree

collaborative filtering: alternating least squares (ALS),
non-negative matrix factorization (NMF)

clustering: k-means||

decomposition: SVD, PCA

optimization: stochastic gradient descent, L-BFGS

The Three Dimensions

ML Objectives

Almost all machine learning objectives are
optimized using this update

w is a vector of dimension d"
we’re trying to find the best w via optimization

Scaling

1) Data size

2) Number of models

3) Model size

Logistic Regression	

Goal:	
 find	
 best	
 line	
 separating	
 two	
 sets	
 of	
 points	

+

–

+ + +

+

+

+
+ +

– –
–

–

–

–
– –

+

target	

–

random	
 initial	
 line	

Data Scaling

data	
 =	
 spark.textFile(...).map(readPoint).cache()	

	

w	
 =	
 numpy.random.rand(D)	

	

for	
 i	
 in	
 range(iterations):	

	
 	
 	
 	
 gradient	
 =	
 data.map(lambda	
 p:	

	
 	
 	
 	
 	
 	
 	
 	
 (1	
 /	
 (1	
 +	
 exp(-­‐p.y	
 *	
 w.dot(p.x))))	
 *	
 p.y	
 *	
 p.x	

	
 	
 	
 	
).reduce(lambda	
 a,	
 b:	
 a	
 +	
 b)	

	
 	
 	
 	
 w	
 -­‐=	
 gradient	

	

print	
 “Final	
 w:	
 %s”	
 %	
 w	

Separable Updates

Can be generalized for

»  Unconstrained optimization

»  Smooth or non-smooth

»  LBFGS, Conjugate Gradient, Accelerated
Gradient methods, …

Logistic Regression Results

0

500

1000

1500

2000

2500

3000

3500

4000

1
 5
 10
 20
 30

Ru
nn

ing
 T

im
e

(s)

Number of Iterations

Hadoop

Spark

110 s / iteration

first iteration 80 s

further iterations 1 s

100 GB of data on 50 m1.xlarge EC2 machines
	

Behavior with Less RAM

68

.8

58
.1

40
.7

29
.7

11
.5

0

20

40

60

80

100

0%
 25%
 50%
 75%
 100%

Ite
ra

tio
n

tim
e

(s)

% of working set in memory

Lots of little models

Is embarrassingly parallel

Most of the work should be handled by data
flow paradigm

ML pipelines does this

Hyper-parameter Tuning

Model Scaling

Linear models only need to compute the dot
product of each example with model

Use a BlockMatrix to store data, use joins to
compute dot products

Coming in 1.5

Model Scaling

Data joined with model (weight):

Life of a Spark Program

Life of a Spark Program

1) Create some input RDDs from external data or

parallelize a collection in your driver program.

2) Lazily transform them to define new RDDs using
transformations like filter() or map()	

3) Ask Spark to cache() any intermediate RDDs that
will need to be reused.

4) Launch actions such as count() and collect() to
kick off a parallel computation, which is then optimized
and executed by Spark.

Example Transformations

map()	
 intersection()	
 cartesion()	

flatMap()	

	

distinct()	
 pipe()	

filter()	
 	
 groupByKey()	
 coalesce()	

mapPartitions()	
 reduceByKey()	
 repartition()	

mapPartitionsWithIndex()	
 sortByKey()	
 partitionBy()	

sample()	
 join()	
 ...	

union()	
 cogroup()	
 ...	

Example Actions

reduce()	
 takeOrdered()	

collect()	
 saveAsTextFile()	

count()	
 saveAsSequenceFile()	

first()	
 saveAsObjectFile()	

take()	
 countByKey()	

takeSample()	
 foreach()	

saveToCassandra()	
 ...	

Communication Patterns

None: "
 Map, Filter (embarrassingly parallel)

All-to-one: "
 reduce

One-to-all:"
 broadcast

All-to-all: "
 reduceByKey, groupyByKey, Join

Communication Patterns

Shipping code to the cluster

RDD à Stages à Tasks

rdd1.join(rdd2)
 .groupBy(…)
 .filter(…)

RDD	
 Objects	

build	
 operator	
 DAG	

DAG	
 Scheduler	

split	
 graph	
 into	

stages	
 of	
 tasks	

submit	
 each	

stage	
 as	
 ready	

DAG	

Task	
 Scheduler	

TaskSet	

launch	
 tasks	
 via	

cluster	
 manager	

retry	
 failed	
 or	

straggling	
 tasks	

Cluster	

manager	

Worker	

execute	
 tasks	

store	
 and	
 serve	

blocks	

Block	

manager	

Threads	

Task	

Example Stages

=	
 cached	
 partition	

=	
 RDD	

join	

filter	

groupBy	

Stage	
 3	

Stage	
 1	

Stage	
 2	

A:	
 B:	

C:	
 D:	
 E:	

F:	

map	

=	
 lost	
 partition	

Talking to Cluster Manager

Manager can be:

 YARN

 Mesos

 Spark Standalone

Shuffling (everyday)

How would you do a reduceByKey on a
cluster?

Sort! Decades of research has given us
algorithms such as TimSort

Shuffle

=
groupByKey

sortByKey

reduceByKey

Sort: use advances in sorting single-machine
memory-disk operations for all-to-all communication

Sorting

Distribute Timsort, which is already well-
adapted to respecting disk vs memory"

Sample points to find good boundaries"

Each machines sorts locally and builds an
index

Sorting (shuffle)

Distributed TimSort

Example Join

Broadcasting

Broadcasting

Often needed to propagate current guess for
optimization variables to all machines

The exact wrong way to do it is with “one
machines feeds all” – use bit-torrent instead

Needs log(p) rounds of communication

Bit-torrent Broadcast

Broadcast Rules

Create with SparkContext.broadcast(initialVal)

Access with .value inside tasks (first task on
each node to use it fetches the value)

Cannot be modified after creation

Replicated Join

Optimization Example: Gradient Descent

Logistic Regression

Already saw this with data scaling

Need to optimize with broadcast

Model Broadcast: LR

Model Broadcast: LR

Use	
 via	
 .value	

Call	
 sc.broadcast	

Rebroadcast	
 with	
 sc.broadcast	

Separable Updates

Can be generalized for

»  Unconstrained optimization

»  Smooth or non-smooth

»  LBFGS, Conjugate Gradient, Accelerated
Gradient methods, …

State of the Spark ecosystem

Most active open source community in big data

200+ developers, 50+ companies contributing

Spark Community

Giraph
 Storm

0

50

100

150

Contributors in past year

Project Activity

M

ap
Re

du
ce

YA

RN

 HD

FS

St
or

m

Sp
ar

k

0

200

400

600

800

1000

1200

1400

1600

M
ap

Re
du

ce

YA
RN

 HD
FS

St

or
m

Sp
ar

k

0

50000

100000

150000

200000

250000

300000

350000

Commits
 Lines of Code Changed

Activity in past 6 months

Continuing Growth

source: ohloh.net

Contributors per month to Spark

Conclusions

Spark and Research

Spark has all its roots in research, so we hope
to keep incorporating new ideas!

Conclusion

Data flow engines are becoming an important
platform for numerical algorithms

While early models like MapReduce were
inefficient, new ones like Spark close this gap

More info: spark.apache.org

