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Data Science Problem

Data growing faster than processing speeds

Only solution is to parallelize on large clusters

» Wide use in both enterprises and web industry


How do we program these things?




Use a Cluster


Convex Optimization


Matrix Factorization


Machine Learning





Numerical Linear Algebra


Large Graph analysis


Streaming and online 
algorithms


Following	
  lectures	
  on	
  http://stanford.edu/~rezab/dao	
  
	
  	
  
	
  



Outline

Data Flow Engines and Spark

The Three Dimensions of Machine Learning

Communication Patterns


Advanced Optimization

State of Spark Ecosystem









Traditional Network Programming


Message-passing between nodes (e.g. MPI)

Very difficult to do at scale:

» How to split problem across nodes?


•  Must consider network & data locality

» How to deal with failures? (inevitable at scale)

» Even worse: stragglers (node not failed, but slow)

» Ethernet networking not fast

» Have to write programs for each machine


Rarely used in commodity datacenters




Disk vs Memory

L1 cache reference: 
 
 
0.5 ns


L2 cache reference: 
 
 
7 ns


Mutex lock/unlock: 
 
 
100 ns


Main memory reference: 
100 ns


Disk seek: 

 
 
 
 
 
10,000,000 ns




Network vs Local

Send 2K bytes over 1 Gbps network: 
 
20,000 ns


Read 1 MB sequentially from memory: 
250,000 ns


Round trip within same datacenter: 
 
500,000 ns


Read 1 MB sequentially from network: 
10,000,000 ns


Read 1 MB sequentially from disk: 
 
 
30,000,000 ns


Send packet CA->Netherlands->CA: 
 
150,000,000 ns







Data Flow Models

Restrict the programming interface so that the 
system can do more automatically

Express jobs as graphs of high-level operators

» System picks how to split each operator into tasks 

and where to run each task

» Run parts twice fault recovery


Biggest example: MapReduce

Map


Map


Map


Reduce


Reduce




iter. 1
 iter. 2
 .  .  .


Input


file system"
read


file system"
write


file system"
read


file system"
write


Input


query 1


query 2


query 3


result 1


result 2


result 3


.  .  .


file system"
read


Commonly spend 90% of time doing I/O


Example: Iterative Apps




MapReduce evolved

MapReduce is great at one-pass computation, 
but inefficient for multi-pass algorithms

No efficient primitives for data sharing

» State between steps goes to distributed file system

» Slow due to replication & disk storage




Verdict

MapReduce algorithms research doesn’t go 
to waste, it just gets sped up and easier to 
use




Still useful to study as an algorithmic 
framework, silly to use directly




Spark Computing Engine

Extends a programming language with a 
distributed collection data-structure

» “Resilient distributed datasets” (RDD)


Open source at Apache

» Most active community in big data, with 50+ 

companies contributing


Clean APIs in Java, Scala, Python

Community: SparkR, being released in 1.4!




Key Idea

Resilient Distributed Datasets (RDDs)

» Collections of objects across a cluster with user 

controlled partitioning & storage (memory, disk, ...)

» Built via parallel transformations (map, filter, …)

» The world only lets you make make RDDs such that 

they can be:


Automatically rebuilt on failure




Resilient Distributed Datasets (RDDs)


Main idea: Resilient Distributed Datasets

»  Immutable collections of objects, spread across cluster

» Statically typed: RDD[T] has objects of type T


val sc = new SparkContext()!
val lines = sc.textFile("log.txt")   // RDD[String]!
!
// Transform using standard collection operations !
val errors = lines.filter(_.startsWith("ERROR")) !
val messages = errors.map(_.split(‘\t’)(2)) !
!
messages.saveAsTextFile("errors.txt") !

lazily evaluated


kicks off a computation




MLlib: Available algorithms

classification: logistic regression, linear SVM,"
naïve Bayes, least squares, classification tree

regression: generalized linear models (GLMs), 
regression tree

collaborative filtering: alternating least squares (ALS), 
non-negative matrix factorization (NMF)

clustering: k-means||

decomposition: SVD, PCA

optimization: stochastic gradient descent, L-BFGS








The Three Dimensions




ML Objectives


Almost all machine learning objectives are 
optimized using this update






w is a vector of dimension d"
we’re trying to find the best w via optimization




Scaling


1) Data size



2) Number of models




3) Model size






Logistic Regression	
  
Goal:	
  find	
  best	
  line	
  separating	
  two	
  sets	
  of	
  points	
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– 

random	
  initial	
  line	
  



Data Scaling

data	
  =	
  spark.textFile(...).map(readPoint).cache()	
  
	
  
w	
  =	
  numpy.random.rand(D)	
  
	
  
for	
  i	
  in	
  range(iterations):	
  
	
  	
  	
  	
  gradient	
  =	
  data.map(lambda	
  p:	
  
	
  	
  	
  	
  	
  	
  	
  	
  (1	
  /	
  (1	
  +	
  exp(-­‐p.y	
  *	
  w.dot(p.x))))	
  *	
  p.y	
  *	
  p.x	
  
	
  	
  	
  	
  ).reduce(lambda	
  a,	
  b:	
  a	
  +	
  b)	
  
	
  	
  	
  	
  w	
  -­‐=	
  gradient	
  
	
  
print	
  “Final	
  w:	
  %s”	
  %	
  w	
  



Separable Updates

Can be generalized for

»  Unconstrained optimization

»  Smooth or non-smooth


»  LBFGS, Conjugate Gradient, Accelerated 
Gradient methods, …




Logistic Regression Results
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Number of Iterations


Hadoop

Spark


110 s / iteration


first iteration 80 s

further iterations 1 s


100 GB of data on 50 m1.xlarge EC2 machines 
	
  



Behavior with Less RAM
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Lots of little models

Is embarrassingly parallel



Most of the work should be handled by data 
flow paradigm




ML pipelines does this




Hyper-parameter Tuning




Model Scaling

Linear models only need to compute the dot 
product of each example with model




Use a BlockMatrix to store data, use joins to 
compute dot products




Coming in 1.5




Model Scaling

Data joined with model (weight):






Life of a Spark Program











Life of a Spark Program

1) Create some input RDDs from external data or 

parallelize a collection in  your driver program. 

2) Lazily transform them to define new RDDs using 
transformations like  filter() or map()	
  

3) Ask Spark to  cache() any intermediate RDDs that 
will need to be reused. 

4) Launch actions such as  count() and  collect() to 
kick off a parallel computation, which is then optimized 
and executed by Spark. 



Example Transformations

map()	
   intersection()	
   cartesion()	
  

flatMap()	
  
	
  

distinct()	
   pipe()	
  

filter()	
  	
   groupByKey()	
   coalesce()	
  

mapPartitions()	
   reduceByKey()	
   repartition()	
  

mapPartitionsWithIndex()	
   sortByKey()	
   partitionBy()	
  

sample()	
   join()	
   ...	
  

union()	
   cogroup()	
   ...	
  



Example Actions

reduce()	
   takeOrdered()	
  

collect()	
   saveAsTextFile()	
  

count()	
   saveAsSequenceFile()	
  

first()	
   saveAsObjectFile()	
  

take()	
   countByKey()	
  

takeSample()	
   foreach()	
  

saveToCassandra()	
   ...	
  



Communication Patterns

None: "
  Map, Filter (embarrassingly parallel)

All-to-one: "
   reduce

One-to-all:"
   broadcast

All-to-all: "
   reduceByKey, groupyByKey, Join




Communication Patterns








Shipping code to the cluster




RDD à Stages à Tasks


rdd1.join(rdd2) 
    .groupBy(…) 
    .filter(…) 

RDD	
  Objects	
  

build	
  operator	
  DAG	
  

DAG	
  Scheduler	
  

split	
  graph	
  into	
  
stages	
  of	
  tasks	
  

submit	
  each	
  
stage	
  as	
  ready	
  

DAG	
  

Task	
  Scheduler	
  

TaskSet	
  

launch	
  tasks	
  via	
  
cluster	
  manager	
  

retry	
  failed	
  or	
  
straggling	
  tasks	
  

Cluster	
  
manager	
  

Worker	
  

execute	
  tasks	
  

store	
  and	
  serve	
  
blocks	
  

Block	
  
manager	
  

Threads	
  
Task	
  



Example Stages


=	
  cached	
  partition	
  

=	
  RDD	
  

join	
  

filter	
  

groupBy	
  

Stage	
  3	
  

Stage	
  1	
  

Stage	
  2	
  

A:	
   B:	
  

C:	
   D:	
   E:	
  

F:	
  

map	
  

=	
  lost	
  partition	
  



Talking to Cluster Manager

Manager can be:

  YARN

  Mesos


  Spark Standalone








Shuffling (everyday)








How would you do a reduceByKey on a 
cluster?




Sort! Decades of research has given us 
algorithms such as TimSort




Shuffle


= 
groupByKey 
 
sortByKey 
 
reduceByKey 

Sort: use advances in sorting single-machine 
memory-disk operations for all-to-all communication 



Sorting

Distribute Timsort, which is already well-
adapted to respecting disk vs memory"



Sample points to find good boundaries"



Each machines sorts locally and builds an 
index









Sorting (shuffle)


Distributed TimSort




Example Join








Broadcasting




Broadcasting

Often needed to propagate current guess for 
optimization variables to all machines




The exact wrong way to do it is with “one 
machines feeds all” – use bit-torrent instead




Needs log(p) rounds of communication




Bit-torrent Broadcast




Broadcast Rules

Create with SparkContext.broadcast(initialVal)



Access with .value inside tasks (first task on 
each node to use it fetches the value)




Cannot be modified after creation




Replicated Join








Optimization Example: Gradient Descent




Logistic Regression

Already saw this with data scaling



Need to optimize with broadcast









Model Broadcast: LR




Model Broadcast: LR


Use	
  via	
  .value	
  

Call	
  sc.broadcast	
  

Rebroadcast	
  with	
  sc.broadcast	
  



Separable Updates

Can be generalized for

»  Unconstrained optimization

»  Smooth or non-smooth


»  LBFGS, Conjugate Gradient, Accelerated 
Gradient methods, …








State of the Spark ecosystem




Most active open source community in big data


200+ developers, 50+ companies contributing


Spark Community
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Project Activity
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Activity in past 6 months




Continuing Growth


source: ohloh.net


Contributors per month to Spark








Conclusions




Spark and Research

Spark has all its roots in research, so we hope 
to keep incorporating new ideas!




Conclusion

Data flow engines are becoming an important 
platform for numerical algorithms

While early models like MapReduce were 
inefficient, new ones like Spark close this gap

More info: spark.apache.org



