
Reza Zadeh

Distributed Machine Learning"
on Spark

@Reza_Zadeh | http://reza-zadeh.com

Outline

Data flow vs. traditional network programming

Spark computing engine

Optimization Example

Matrix Computations

MLlib + {Streaming, GraphX, SQL}

Future of MLlib

Data Flow Models

Restrict the programming interface so that the
system can do more automatically

Express jobs as graphs of high-level operators

» System picks how to split each operator into tasks

and where to run each task

» Run parts twice fault recovery

Biggest example: MapReduce

Map

Map

Map

Reduce

Reduce

Spark Computing Engine

Extends a programming language with a
distributed collection data-structure

» “Resilient distributed datasets” (RDD)

Open source at Apache

» Most active community in big data, with 50+

companies contributing

Clean APIs in Java, Scala, Python

Community: SparkR

Key Idea

Resilient Distributed Datasets (RDDs)

» Collections of objects across a cluster with user

controlled partitioning & storage (memory, disk, ...)

» Built via parallel transformations (map, filter, …)

» The world only lets you make make RDDs such that

they can be:

Automatically rebuilt on failure

MLlib History

MLlib is a Spark subproject providing machine
learning primitives

Initial contribution from AMPLab, UC Berkeley

Shipped with Spark since Sept 2013

MLlib: Available algorithms

classification: logistic regression, linear SVM,"
naïve Bayes, least squares, classification tree

regression: generalized linear models (GLMs),
regression tree

collaborative filtering: alternating least squares (ALS),
non-negative matrix factorization (NMF)

clustering: k-means||

decomposition: SVD, PCA

optimization: stochastic gradient descent, L-BFGS

Optimization

At least two large classes of optimization
problems humans can solve:

»  Convex Programs

»  Spectral Problems

Optimization Example

Logistic Regression

data	
 =	
 spark.textFile(...).map(readPoint).cache()	

	

w	
 =	
 numpy.random.rand(D)	

	

for	
 i	
 in	
 range(iterations):	

	
 	
 	
 	
 gradient	
 =	
 data.map(lambda	
 p:	

	
 	
 	
 	
 	
 	
 	
 	
 (1	
 /	
 (1	
 +	
 exp(-­‐p.y	
 *	
 w.dot(p.x))))	
 *	
 p.y	
 *	
 p.x	

	
 	
 	
 	
).reduce(lambda	
 a,	
 b:	
 a	
 +	
 b)	

	
 	
 	
 	
 w	
 -­‐=	
 gradient	

	

print	
 “Final	
 w:	
 %s”	
 %	
 w	

Logistic Regression Results

0

500

1000

1500

2000

2500

3000

3500

4000

1
 5
 10
 20
 30

Ru
nn

ing
 T

im
e

(s)

Number of Iterations

Hadoop

Spark

110 s / iteration

first iteration 80 s

further iterations 1 s

100 GB of data on 50 m1.xlarge EC2 machines
	

Behavior with Less RAM

68

.8

58
.1

40
.7

29
.7

11
.5

0

20

40

60

80

100

0%
 25%
 50%
 75%
 100%

Ite
ra

tio
n

tim
e

(s)

% of working set in memory

Distributing Matrix Computations

Distributing Matrices

How to distribute a matrix across machines?

»  By Entries (CoordinateMatrix)

»  By Rows (RowMatrix)

»  By Blocks (BlockMatrix)

All of Linear Algebra to be rebuilt using these
partitioning schemes

As	
 of	
 version	
 1.3	

Distributing Matrices

Even the simplest operations require thinking
about communication e.g. multiplication

How many different matrix multiplies needed?

»  At least one per pair of {Coordinate, Row,

Block, LocalDense, LocalSparse} = 10

»  More because multiplies not commutative

Singular Value Decomposition on Spark

Singular Value
Decomposition

Singular Value Decomposition

Two cases

»  Tall and Skinny

»  Short and Fat (not really)

»  Roughly Square

SVD method on RowMatrix takes care of
which one to call.

Tall and Skinny SVD

Tall and Skinny SVD

Gets	
 us	
 	
 	
 V	
 and	
 the	

singular	
 values	

Gets	
 us	
 	
 	
 U	
 by	
 one	

matrix	
 multiplication	

Square SVD

ARPACK: Very mature Fortran77 package for
computing eigenvalue decompositions"

JNI interface available via netlib-java"

Distributed using Spark – how?

Square SVD via ARPACK

Only interfaces with distributed matrix via
matrix-vector multiplies

The result of matrix-vector multiply is small.

The multiplication can be distributed.

Square SVD

With 68 executors and 8GB memory in each,
looking for the top 5 singular vectors

Communication-Efficient

All pairs similarity on Spark (DIMSUM)

All pairs Similarity

All pairs of cosine scores between n vectors

»  Don’t want to brute force (n choose 2) m

»  Essentially computes

"
Compute via DIMSUM

»  Dimension Independent Similarity
Computation using MapReduce

Intuition

Sample columns that have many non-zeros
with lower probability. "

On the flip side, columns that have fewer non-
zeros are sampled with higher probability."

Results provably correct and independent of
larger dimension, m.

Spark implementation

MLlib + {Streaming, GraphX, SQL}

A General Platform

Spark Core

Spark
Streaming"

real-time

Spark SQL

structured

GraphX

graph

MLlib

machine
learning

…

Standard libraries included with Spark

Benefit for Users

Same engine performs data extraction, model
training and interactive queries

…
DFS
read

DFS
write
pa

rs
e
 DFS
read

DFS
write
tra

in
 DFS
read

DFS
write
qu

er
y

DFS

DFS
read
 pa

rs
e

tra
in

qu
er

y

Separate engines

Spark

MLlib + Streaming

As of Spark 1.1, you can train linear models in
a streaming fashion, k-means as of 1.2

Model weights are updated via SGD, thus
amenable to streaming

More work needed for decision trees

MLlib + SQL

points = context.sql(“select latitude, longitude from tweets”) !

model = KMeans.train(points, 10) !
!

DataFrames coming in Spark 1.3! (March 2015)

MLlib + GraphX

Future of MLlib

Research Goal: General
Distributed Optimization

Distribute	
 CVX	
 by	

backing	
 CVXPY	
 with	

PySpark	

	

Easy-­‐to-­‐express	

distributable	
 convex	

programs	

	

Need	
 to	
 know	
 less	

math	
 to	
 optimize	

complicated	

objectives	

Most active open source community in big data

200+ developers, 50+ companies contributing

Spark Community

Giraph
 Storm

0

50

100

150

Contributors in past year

Continuing Growth

source: ohloh.net

Contributors per month to Spark

Spark and ML

Spark has all its roots in research, so we hope
to keep incorporating new ideas!

