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Data Flow Models

Restrict the programming interface so that the 
system can do more automatically

Express jobs as graphs of high-level operators

» System picks how to split each operator into tasks 

and where to run each task

» Run parts twice fault recovery


Biggest example: MapReduce
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Spark Computing Engine

Extends a programming language with a 
distributed collection data-structure

» “Resilient distributed datasets” (RDD)


Open source at Apache

» Most active community in big data, with 50+ 

companies contributing


Clean APIs in Java, Scala, Python

Community: SparkR




Key Idea

Resilient Distributed Datasets (RDDs)

» Collections of objects across a cluster with user 

controlled partitioning & storage (memory, disk, ...)

» Built via parallel transformations (map, filter, …)

» The world only lets you make make RDDs such that 

they can be:


Automatically rebuilt on failure




MLlib History

MLlib is a Spark subproject providing machine 
learning primitives




Initial contribution from AMPLab, UC Berkeley 




Shipped with Spark since Sept 2013




MLlib: Available algorithms

classification: logistic regression, linear SVM,"
naïve Bayes, least squares, classification tree

regression: generalized linear models (GLMs), 
regression tree

collaborative filtering: alternating least squares (ALS), 
non-negative matrix factorization (NMF)

clustering: k-means||

decomposition: SVD, PCA

optimization: stochastic gradient descent, L-BFGS




Optimization

At least two large classes of optimization 
problems humans can solve:

»  Convex Programs


»  Spectral Problems








Optimization Example




Logistic Regression

data	
  =	
  spark.textFile(...).map(readPoint).cache()	
  
	
  
w	
  =	
  numpy.random.rand(D)	
  
	
  
for	
  i	
  in	
  range(iterations):	
  
	
  	
  	
  	
  gradient	
  =	
  data.map(lambda	
  p:	
  
	
  	
  	
  	
  	
  	
  	
  	
  (1	
  /	
  (1	
  +	
  exp(-­‐p.y	
  *	
  w.dot(p.x))))	
  *	
  p.y	
  *	
  p.x	
  
	
  	
  	
  	
  ).reduce(lambda	
  a,	
  b:	
  a	
  +	
  b)	
  
	
  	
  	
  	
  w	
  -­‐=	
  gradient	
  
	
  
print	
  “Final	
  w:	
  %s”	
  %	
  w	
  



Logistic Regression Results
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Number of Iterations


Hadoop

Spark


110 s / iteration


first iteration 80 s

further iterations 1 s


100 GB of data on 50 m1.xlarge EC2 machines 
	
  



Behavior with Less RAM
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Distributing Matrix Computations




Distributing Matrices

How to distribute a matrix across machines?

»  By Entries (CoordinateMatrix)

»  By Rows (RowMatrix)


»  By Blocks (BlockMatrix)

All of Linear Algebra to be rebuilt using these 
partitioning schemes


As	
  of	
  version	
  1.3	
  



Distributing Matrices

Even the simplest operations require thinking 
about communication e.g. multiplication




How many different matrix multiplies needed?

»  At least one per pair of {Coordinate, Row, 

Block, LocalDense, LocalSparse} = 10

»  More because multiplies not commutative










Singular Value Decomposition on Spark




Singular Value 
Decomposition




Singular Value Decomposition

Two cases

»  Tall and Skinny

»  Short and Fat (not really)


»  Roughly Square

SVD method on RowMatrix takes care of 
which one to call.









Tall and Skinny SVD




Tall and Skinny SVD


Gets	
  us	
  	
  	
  V	
  and	
  the	
  
singular	
  values	
  

Gets	
  us	
  	
  	
  U	
  by	
  one	
  
matrix	
  multiplication	
  



Square SVD

ARPACK: Very mature Fortran77 package for 
computing eigenvalue decompositions"



JNI interface available via netlib-java"



Distributed using Spark – how?




Square SVD via ARPACK

Only interfaces with distributed matrix via 
matrix-vector multiplies




The result of matrix-vector multiply is small.

The multiplication can be distributed. 







Square SVD


With 68 executors and 8GB memory in each, 
looking for the top 5 singular vectors










Communication-Efficient 


All pairs similarity on Spark (DIMSUM)




All pairs Similarity

All pairs of cosine scores between n vectors

»  Don’t want to brute force (n choose 2) m

»  Essentially computes 


"
Compute via DIMSUM


»  Dimension Independent Similarity 
Computation using MapReduce




Intuition

Sample columns that have many non-zeros 
with lower probability. "



On the flip side, columns that have fewer non-
zeros are sampled with higher probability."


Results provably correct and independent of 
larger dimension, m.







Spark implementation








MLlib + {Streaming, GraphX, SQL}




A General Platform


Spark Core


Spark 
Streaming"

real-time


Spark SQL

structured


GraphX

graph


MLlib

machine 
learning


…


Standard libraries included with Spark




Benefit for Users

Same engine performs data extraction, model 
training and interactive queries




… 
DFS 
read


DFS 
write
pa

rs
e
 DFS 
read


DFS 
write
tra

in
 DFS 
read


DFS 
write
qu

er
y


DFS


DFS 
read
 pa

rs
e


tra
in


qu
er

y


Separate engines


Spark




MLlib + Streaming

As of Spark 1.1, you can train linear models in 
a streaming fashion, k-means as of 1.2




Model weights are updated via SGD, thus 
amenable to streaming




More work needed for decision trees




MLlib + SQL


points = context.sql(“select latitude, longitude from tweets”) !

model = KMeans.train(points, 10) !
!










DataFrames coming in Spark 1.3! (March 2015)




MLlib + GraphX








Future of MLlib




Research Goal: General 
Distributed Optimization


Distribute	
  CVX	
  by	
  
backing	
  CVXPY	
  with	
  

PySpark	
  
	
  

Easy-­‐to-­‐express	
  
distributable	
  convex	
  

programs	
  
	
  

Need	
  to	
  know	
  less	
  
math	
  to	
  optimize	
  

complicated	
  
objectives	
  



Most active open source community in big data


200+ developers, 50+ companies contributing


Spark Community


Giraph
 Storm


0


50


100


150


Contributors in past year




Continuing Growth


source: ohloh.net


Contributors per month to Spark




Spark and ML

Spark has all its roots in research, so we hope 
to keep incorporating new ideas!



