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Data Flow Models

Restrict the programming interface so that the
system can do more automatically

Express jobs as graphs of high-level operators
» System picks how to split each operator into tasks
and where to run each task
» Run parts twice fault recovery

Biggest example: MapReduce %




Spark Computing Engine

Extends a programming language with a

distributed collection data-structure
» “Resilient distributed datasets” (RDD)

Open source at Apache
» Most active community in big data, with 50+
companies contributing

Clean APIls in Java, Scala, Python
Community: SparkR



Key ldea

Resilient Distributed Datasets (RDDs)
» Collections of objects across a cluster with user
controlled partitioning & storage (memory, disk, ...)
» Built via parallel transformations (map, filter, ...)
» The world only lets you make make RDDs such that
they can be:

Automatically rebuilt on failure



MLIib History

MLlIib is a Spark subproject providing machine
learning primitives

Initial contribution from AMPLab, UC Berkeley

Shipped with Spark since Sept 2013



MLIIb: Avallable algorithms

classification: logistic regression, linear SVM,
naive Bayes, least squares, classification tree

regression: generalized linear models (GLMs),
regression tree

collaborative filtering: alternating least squares (ALS),
non-negative matrix factorization (NMF)

clustering: k-means||
decomposition: SVD, PCA
optimization: stochastic gradient descent, L-BFGS



Optimization
At least two large classes of optimization
problems humans can solve:

» Convex Programs

» Spectral Problems



Optimization Example



Logistic Regression
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val points = spark.textFile(...).map(parsePoint).cache()
var w = Vector.zeros(d)

for (1 <- 1 to numlIterations) {
val gradient = points.map { p =>
(1 /7 (1 + exp(-p.y * w.dot(p.x)) - 1) * p.y * p.X
).reduce(_ + _)
w -= alpha * gradient

}



L ogistic Regression Results
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Behavior with Less RAM
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Distributing Matrix Computations



Distributing Matrices

How to distribute a matrix across machines?
» By Entries (CoordinateMatrix)

» By Rows (RowMatrix)

» By Blocks (BlockMatrix) As of version 1.3

All of Linear Algebra to be rebuilt using these
partitioning schemes



Distributing Matrices

Even the simplest operations require thinking
about communication e.g. multiplication

How many different matrix multiplies needed?

» At least one per pair of {Coordinate, Row,
Block, LocalDense, LocalSparse} = 10

» More because multiplies not commutative



Singular Value Decomposition on Spark



Singular Value

Decomposition

Amxn=

mxk




Singular Value Decomposition

Two cases

» Tall and Skinny

» Short and Fat (not really)
» Roughly Square

SVD method on RowMatrix takes care of
which one to call.



Tall and Skinny SVD

@ Given m x n matrix A, with m > n.

@ We compute AT A.
@ ATAis n x n, considerably smaller than A.

e A’ Ais dense.
@ Holds dot products between all pairs of columns of A.

A=UxV" ATA = ve2v?



Tall and Skinny SVD

- _ Getsus V and the
ATA = VXV singular values

Getsus U by one

_ T
A=U%V matrix multiplication



Square SVD

ARPACK: Very mature Fortran/ 7 package for
computing eigenvalue decompositions

JNI interface available via netlib-java

Distributed using Spark — how?



Square SVD via ARPACK

Only interfaces with distributed matrix via
matrix-vector multiplies

K,=[b Ab A% -.. A"

The result of matrix-vector multiply is small.

The multiplication can be distributed.



Square SVD

o Number of Time per iteration Total time

Matrix size

nonzeros (s) (s)
23,000,000 x

51,000,000 0.2 10
38,000
63,000,000 x

440,000,000 1 50
49,000
94,000,000 x

1,600,000,000 0.5 50
4.000

With 68 executors and 8GB memory in each,
looking for the top 5 singular vectors



Communication-Efficient A*A

All pairs similarity on Spark (DIMSUM)



All pairs Similarity

All pairs of cosine scores between n vectors
» Don’t want to brute force (n choose 2) m

» Essentially computes A74

Compute via DIMSUM

» Dimension Independent Similarity
Computation using MapReduce



INturtion

Sample columns that have many non-zeros
with lower probabillity.

On the flip side, columns that have fewer non-
zeros are sampled with higher probability.

Results provably correct and independent of
larger dimension, m.



Spark implementation

// Load and parse the data file.

val rows = sc.textFile(filename).map { line =»>
val values = line.split(' ").map(_.toDouble)
Vectors.dense(values)

}

val mat = new RowMatrix(rows)

// Compute similar columns perfectly, with brute force.

val simsPerfect = mat.columnSimilarities()

// Compute similar columns with estimation using DIMSUM

val simsEstimate = mat.columnSimilarities(threshold)



MLIib + {Streaming, GraphX, SQL}



A General Platform

Standard libraries included with Spark

Spark MLIib
Streaming machine
real-time learning

Spark SQL

structured

Spark Core




Benefit for Users

Same engine performs data extraction, model
training and interactive queries

Separate engines

train

Spark sl @ python
_ EScala

parse
train
w,
1
wn



MLIlib + Streaming

As of Spark 1.1, you can train linear models in
a streaming fashion, k-means as of 1.2

Model weights are updated via SGD, thus
amenable to streaming

More work needed for decision trees



MLIIb + SQL

points = context.sql(“select latitude, longitude from tweets”)

model = KMeans.train(points, 10)

DataFrames coming in Spark 1.3! (March 2015)



MLIib + GraphX

val graph = Graph(pages, 1links)
val pageRank: RDD[(Long, Double)] = graph.staticPageRank(10).vertices

val labelAndFeatures: RDD[(Long, (Double, Seq((Int, Double)))] = ...
val training: RDD[LabeledPoint] =
labelAndFeatures. join(pageRank) .map {
case (id, ((label, features), pageRank)) =>
LabeledPoint(label, Vectors.sparse(features ++ (1000, pageRank))

val model = LogisticRegressionWithSGD.train(training)



Future of MLIIb



Research Goal: General
Distributed Optimization

from cvxpy import *

# Create two scalar optimization variables.

Distribute CVX by x = Variable()
. . - Variabl
backing CVXPY with At
# Create two constraints.
PySpark constraints = [x + y == 1,
X -y > 1]
Easy-to-express # Form objective.
distributable convex B = RS = o

prog rams # Form and solve problem.

prob = Problem(obj, constraints)
prob.solve() # Returns the optimal value.
print "status:", prob.status

Need to know less print "optimal value", prob.value
math to Optimize print "optimal var", x.value, y.value

complicated status: optimal

. . optimal value 0.999999989323
ObJECthES optimal var ©.999999998248 1.75244914951e-09



Spark Community

Most active open source community in big data

200+ developers, 50+ companies contributing
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Continuing Growth
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Spark and ML

Spark has all its roots in research, so we hope
to keep incorporating new ideas!



