Matrix and Graph Computations

Reza Zadeh

€ databricks

Spcn"lgZ

@Reza_Zadeh | http://reza-zadeh.com

Overview

Graph Computations and Pregel

Introduction to Matrix Computations

Graph Computations and Pregel

Data Flow Models

Restrict the programming interface so that the
system can do more automatically

Express jobs as graphs of high-level operators
» System picks how to split each operator into tasks
and where to run each task
» Run parts twice fault recovery

New example: Pregel (parallel graph google)

Pregel

reggl g 43 GraphA
GIRAPH

Expose specialized APIs to simplify graph
brogramming.

“Think like a vertex”

Graph-Parallel Pattern

Computation depends
only on the neighbors

Pregel Data Flow

[Input graph } [Vertexstatell [Messages 1 }

— B Group by vertexID

Superstep 1

)

[Vertex state 2 } [Messages 2 }

e l w

Superstep 2

Simple Pregel in Spark
Separate RDDs for immutable graph state and
for vertex states and messages at each iteration
Use groupByKey to perform each step

Cache the resulting vertex and message RDDs

Optimization: co-partition input graph and
vertex state RDDs to reduce communication

Example: PageRank

R[] =015+ » wjR[j]

Rank of
user i Weighted sum of

neighbors’ ranks

Update ranks in parallel

lterate until convergence

PageRank in Pregel

[Input graph } [Vertex ranks 1 } [Contributions 1}

l

]

[Vertex ranks 2 } [Contributions 2}

\ l

]

GraphX

GraphX

class Graph[VD, ED] {
val vertices: VertexRDD[VD]
val edges: EdgeRDD [ED]

}

Provides Pregel message-passing and other
operators on top of RDDs

GraphX: Properties

Property Graph

Vertex Table

Id

Property (V)

(rxin, student)

(jgonzal, postdoc)

(franklin, professor)

3
-
5
2

(istoica, professor)

Edge Table

Src

Id

Dstld Property (E)

7

Collaborator

Advisor

Colleague

U |IN |

3
5
7

Pl

GraphX: Triplets

The triplets operator joins vertices and edges:

Vertices: % Edges: Iriplets:

Map Reduce Iriplets

Map-Reduce for each vertex G.
nap(R-e-@) =
mapF((RQee~(Q)) =

reduceF(,) = @

Example: Oldest Follower

23

What is the age of the oldest \B
follower for each user?

val oldestFollowerAge = graph
.mrTriplets(
e=> (e.dst.i1d, e.src.age),
(a,b)=> max(a, b)
)

.vertices

19

30

75

Summary of Operators

All operations:

https://spark.apache.org/docs/latest/graphx-programming-quide.html#summary-list-of-operators

Pregel API:

https://spark.apache.org/docs/latest/graphx-programming-quide.html#pregel-api

The GraphX Stack
(Lines of Code)

PageRank | Connected | Shortest | SVD | ALS K-core
(5) Comp. (10) fPath (10)] (40) | (40) (51

Pregel (28) + GraphlLab (50)

Triangle
Count
(45)

GraphX (3575)

Spark

Optimizations

Overloaded vertices have their work

distributed
b e é"z

7 SS
’ So
7 ~
. ~

Edge Cut Vertex Cut

Optimizations

Property Graph

x‘ 2D Vertex Cut Heuristic

w W

Vertex Table
(RDD)

DDODNAM

Routing
Table

(RDD)

A [\ [\ [\ A

Edge Table
(RDD)

|) |
©) (=

More examples

In your HW: Single-Source-Shortest Paths
using Pregel

Distributing Matrix Computations

Distributing Matrices

How to distribute a matrix across machines?
» By Entries (CoordinateMatrix)

» By Rows (RowMatrix)

» By Blocks (BlockMatrix) As of version 1.3

All of Linear Algebra to be rebuilt using these
partitioning schemes

Distributing Matrices

Even the simplest operations require thinking
about communication e.g. multiplication

How many different matrix multiplies needed?

» At least one per pair of {Coordinate, Row,
Block, LocalDense, LocalSparse} = 10

» More because multiplies not commutative

Distributed Singular Value Decomposition

Singular Value

Decomposition

Amxn=

mxk

Singular Value Decomposition

Two cases

» Tall and Skinny

» Short and Fat (not really)
» Roughly Square

SVD method on RowMatrix takes care of
which one to call.

Tall and Skinny SVD

@ Given m x n matrix A, with m > n.

@ We compute AT A.
@ ATAis n x n, considerably smaller than A.

e A’ Ais dense.
@ Holds dot products between all pairs of columns of A.

A=UxV" ATA = ve2v?

Tall and Skinny SVD

- _ Getsus V and the
ATA = VXV singular values

Getsus U by one

_ T
A=U%V matrix multiplication

Square SVD

ARPACK: Very mature Fortran/ 7 package for
computing eigenvalue decompositions

JNI interface available via netlib-java

Distributed using Spark — how?

Square SVD via ARPACK

Only interfaces with distributed matrix via
matrix-vector multiplies

K,=[b Ab A% -.. A"

The result of matrix-vector multiply is small.

The multiplication can be distributed.

Square SVD

o Number of Time per iteration Total time

Matrix size

nonzeros (s) (s)
23,000,000 x

51,000,000 0.2 10
38,000
63,000,000 x

440,000,000 1 50
49,000
94,000,000 x

1,600,000,000 0.5 50
4.000

With 68 executors and 8GB memory in each,
looking for the top 5 singular vectors

