Introduction to Distributed
Optimization

Reza Zadeh € databricks

. ?i A E ”
INSTITUTE for COMPUTATIONAL &
MATHEMATICAL ENGINEERING
TTTTTTTTTTTTTTTTTTTT

@Reza_Zadeh | http://reza-zadeh.com

Optimization

At least two large classes of optimization
problems humans can solve:

» CGonvex

» Spectral

Optimization Example: Gradient Descent

Logistic Regression

Already saw this with data scaling

Need to optimize with broadcast

Model Broadcast: LR

wew—a-) gwiyi)
i=1

val points = spark.textFile(...).map(parsePoint).cache()
var w = Vector.zeros(d)

for (1 <- 1 to numlIterations) {
val gradient = points.map { p =>
(1 /7 (1 + exp(-p.y * w.dot(p.x)) - 1) * p.y * p.X
).reduce(_ + _)
w -= alpha * gradient

}

Model Broadcast: LR

n
Call sc.broadcast Ww—w—a Zg(w; Ti5 Yi)
1=1

val \points = spark.textFile(...).map(parsePoint).cache()
var w = Vector.zeros(d)

for (1 <- 1 to numlIterations) {
val gradient = points.map { p =>
(1 /7 (1 + exp(-p.y * w.dot(p.x)) - 1) * p.y * p.X
).reduce(_ + _)
w -= alpha * gradient
}

Use via .value

Separable Updates

Can be generalized for
» Unconstrained optimization
» SMOooth or non-smooth

» LBFGS, Conjugate Gradient, Accelerated
Gradient methods, ...

Optimization Example: Spectral Program

Spark PageRank

Given directed graph, compute node
importance. Two RDDs:

» Neighbors (a sparse graph/matrix)

» Current guess (a vector)

Using cache(), keep neighbor list in RAM

Spark PageRank

Using cache(), keep neighbor lists in RAM

Using partitioning, avoid repeated hashing

partitionBy g

C

Neighbors @ 'ﬁ \

(id, edges) b 0‘ ’ \ \\ \
= A\ N\

S A
[D= = .

join join join

Ranks
(id, rank)

(X

Spark PageRank

Generalizes to Matrix Multiplication, opening many algorithms
from Numerical Linear Algebra

Partitioning for PageRank

Recall from first lecture that network
pandwidth is ~100x as expensive as memory

pandwidth

One way Spark avoids using it is through
locality-aware scheduling for RAM and disk

Another important tool is controlling the
partitioning of RDD contents across nodes

Spark PageRank

Given directed graph, compute node
importance. Two RDDs:

» Neighbors (a sparse graph/matrix)

» Current guess (a vector)

Best representation for vector and matrix”?

PageRank

1. Start each page atarankof1

2. On each iteration, have page p contribute
rank / |neighbors | to its neighbors

3. Seteach page’sranktoo.15+ 0.85 x contribs

val 1links
var ranks

// RDD of (url, neighbors) pairs
// RDD of (url, rank) pairs

for (i <- 1 to ITERATIONS) {
val contribs = links.join(ranks).flatmap {
case (url, (links, rank)) =>
Tinks.map(dest => (dest, rank/links.size))

}
ranks = contribs.reduceBykKey(_ + _).mapvalues(.1l5 + .85%_)

}

Execution

" InputFile
lmap
Links J ‘ Ranks,
(url, neighbors) (url, rank)
\¢ljoin
~ Contribs, 1
l reduceByKey
. Ranks, |
\¢l join
. Contribs,
l reduceByKey
Ranks,

\d

1inks and ranks are
repeatedly joined

Each join requires a full

shuffle over the network
» Hash both onto same nodes

join
Tinks \ AF
. %, G-L
; M-R
ranks . S-Z
Map tasks Reduce tasks

Solution

Pre-partition the 1inks RDD so that links for URLs
with the same hash code are on the same node

val ranks
val 1links

// RDD of (url, rank) pairs
sc.textFile(...).map(...)

.partitionBy(new HashPartitioner(8))

for (i <- 1 to ITERATIONS) {
ranks = Tinks.join(ranks).flatmap {
(url, (links, rank)) =>
Tinks.map(dest => (dest, rank/links.size))
}.reduceByKey(_ + _)
.mapvalues(0.15 + 0.85 * _)

New Execution

Input File Links
-
-
J

\

map partitionBy

Ranks, Ranks,

join flatMap reduceByKey join flatMap reduceByKey

How It works

Each RDD has an optional Partitioner object

Any shuffle operation on an RDD with a
Partitioner will respect that Partitioner

Any shuffle operation on two RDDs will take
on the Partitioner of one of them, If one Is set

Examples

pages.join(visits).reduceByKey(...)

-
-
-

join reduceByKey

pages.join(visits).map(...).reduceByKey(...)

1]

join map reduceByKey

pages.join(visits).mapvalues(...).reduceByKey(...)

- - -
-~ -
J -

join mapValues reduceByKey

Main Conclusion

Controlled partitioning can avoid unnecessary
all-to-all communication, saving computation

Repeated joins generalizes to repeated Matrix
Multiplication, opening many algorithms from
Numerical Linear Algelbra

Performance

200 171

n

c ! “ Hadoop

2 150

©

o i Basic Spark

= 100

v

- Spark + Controlled
o) cpr

£ > 23 Partitioning

- -
0

(Why it helps so much: Tinks RDD is much bigger \
in bytes than ranks!

. J

RDD partitioner

Use the .partitioner method on RDD

scala> val a = sc.parallelize(List((1, 1), (2, 2)))

scala> val b sc.parallelize(List((1, 1), (2, 2)))
scala> val joined = a.join(b)

scala> a.partitioner
resO: Option[Partitioner]

None

scala> joined.partitioner

resl: Option[Partitioner] Some (HashPartitioner@286d41c0)

Custom Partitioning

Can define your own subclass of partitioner to
leverage domain-specific knowledge

Example: in PageRank, hash URLs by domain
name, because may links are internal

class DomainPartitioner extends Partitioner {
def numpartitions = 20

def getpartition(key: Any): Int =
parsebomain(key.toString) .hashCode % numPartitions

def equals(other: Any): Boolean =
other.isInstanceOf[DomainPartitioner]

