
Reza Zadeh

Introduction to Distributed
Optimization

@Reza_Zadeh | http://reza-zadeh.com

Optimization

At least two large classes of optimization
problems humans can solve:"

»  Convex

»  Spectral

Optimization Example: Gradient Descent

Logistic Regression

Already saw this with data scaling

Need to optimize with broadcast

Model Broadcast: LR

Model Broadcast: LR

Use	
 via	
 .value	

Call	
 sc.broadcast	

Separable Updates

Can be generalized for

»  Unconstrained optimization

»  Smooth or non-smooth

»  LBFGS, Conjugate Gradient, Accelerated
Gradient methods, …

Optimization Example: Spectral Program

Spark PageRank

Given directed graph, compute node
importance. Two RDDs:

»  Neighbors (a sparse graph/matrix)

»  Current guess (a vector)

"
Using cache(), keep neighbor list in RAM

Spark PageRank

Using cache(), keep neighbor lists in RAM

Using partitioning, avoid repeated hashing

Neighbors

(id, edges)

Ranks

(id, rank)

join

partitionBy

join
 join

…

Spark PageRank

Generalizes	
 to	
 Matrix	
 Multiplication,	
 opening	
 many	
 algorithms	

from	
 Numerical	
 Linear	
 Algebra	

Partitioning for PageRank

Recall from first lecture that network
bandwidth is ~100× as expensive as memory
bandwidth

One way Spark avoids using it is through
locality-aware scheduling for RAM and disk

Another important tool is controlling the
partitioning of RDD contents across nodes

Spark PageRank

Given directed graph, compute node
importance. Two RDDs:

»  Neighbors (a sparse graph/matrix)

»  Current guess (a vector)

Best representation for vector and matrix?

PageRank

Execution

Solution

New Execution

How it works

Each RDD has an optional Partitioner object"

Any shuffle operation on an RDD with a
Partitioner will respect that Partitioner"

Any shuffle operation on two RDDs will take
on the Partitioner of one of them, if one is set

"

Examples

Main Conclusion

Controlled partitioning can avoid unnecessary
all-to-all communication, saving computation

Repeated joins generalizes to repeated Matrix
Multiplication, opening many algorithms from
Numerical Linear Algebra

Performance

RDD partitioner

Custom Partitioning

