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Optimization

At least two large classes of optimization
problems humans can solve:

» CGonvex

» Spectral



Optimization Example: Gradient Descent



Logistic Regression

Already saw this with data scaling

Need to optimize with broadcast



Model Broadcast: LR

wew—a- ) gwiyi)
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val points = spark.textFile(...).map(parsePoint).cache()
var w = Vector.zeros(d)

for (1 <- 1 to numlIterations) {
val gradient = points.map { p =>
(1 /7 (1 + exp(-p.y * w.dot(p.x)) - 1) * p.y * p.X
).reduce(_ + _)
w -= alpha * gradient

}



Model Broadcast: LR

n
Call sc.broadcast Ww—w—a Zg(w; Ti5 Yi)
1=1

val \points = spark.textFile(...).map(parsePoint).cache()
var w = Vector.zeros(d)

for (1 <- 1 to numlIterations) {
val gradient = points.map { p =>
(1 /7 (1 + exp(-p.y * w.dot(p.x)) - 1) * p.y * p.X
).reduce(_ + _)
w -= alpha * gradient
}

Use via .value



Separable Updates

Can be generalized for
» Unconstrained optimization
» SMOooth or non-smooth

» LBFGS, Conjugate Gradient, Accelerated
Gradient methods, ...



Optimization Example: Spectral Program



Spark PageRank

Given directed graph, compute node
importance. Two RDDs:

» Neighbors (a sparse graph/matrix)

» Current guess (a vector)

Using cache(), keep neighbor list in RAM



Spark PageRank

Using cache(), keep neighbor lists in RAM

Using partitioning, avoid repeated hashing
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Spark PageRank

Generalizes to Matrix Multiplication, opening many algorithms
from Numerical Linear Algebra



Partitioning for PageRank

Recall from first lecture that network
pandwidth is ~100x as expensive as memory

pandwidth

One way Spark avoids using it is through
locality-aware scheduling for RAM and disk

Another important tool is controlling the
partitioning of RDD contents across nodes



Spark PageRank

Given directed graph, compute node
importance. Two RDDs:

» Neighbors (a sparse graph/matrix)

» Current guess (a vector)

Best representation for vector and matrix”?



PageRank

1. Start each page atarankof1

2. On each iteration, have page p contribute
rank / |neighbors | to its neighbors

3. Seteach page’sranktoo.15+ 0.85 x contribs

val 1links
var ranks

// RDD of (url, neighbors) pairs
// RDD of (url, rank) pairs

for (i <- 1 to ITERATIONS) {
val contribs = links.join(ranks).flatmap {
case (url, (links, rank)) =>
Tinks.map(dest => (dest, rank/links.size))

}
ranks = contribs.reduceBykKey(_ + _).mapvalues(.1l5 + .85%_)

}



Execution
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1inks and ranks are
repeatedly joined

Each join requires a full

shuffle over the network
» Hash both onto same nodes
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Solution

Pre-partition the 1inks RDD so that links for URLs
with the same hash code are on the same node

val ranks
val 1links

// RDD of (url, rank) pairs
sc.textFile(...).map(...)

.partitionBy(new HashPartitioner(8))

for (i <- 1 to ITERATIONS) {
ranks = Tinks.join(ranks).flatmap {
(url, (links, rank)) =>
Tinks.map(dest => (dest, rank/links.size))
}.reduceByKey(_ + _)
.mapvalues(0.15 + 0.85 * _)



New Execution
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How It works

Each RDD has an optional Partitioner object

Any shuffle operation on an RDD with a
Partitioner will respect that Partitioner

Any shuffle operation on two RDDs will take
on the Partitioner of one of them, If one Is set



Examples

pages.join(visits).reduceByKey(...)

-
-
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join reduceByKey

pages.join(visits).map(...).reduceByKey(...)
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join map reduceByKey

pages.join(visits).mapvalues(...).reduceByKey(...)
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Main Conclusion

Controlled partitioning can avoid unnecessary
all-to-all communication, saving computation

Repeated joins generalizes to repeated Matrix
Multiplication, opening many algorithms from
Numerical Linear Algelbra
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RDD partitioner

Use the .partitioner method on RDD

scala> val a = sc.parallelize(List((1, 1), (2, 2)))

scala> val b sc.parallelize(List((1, 1), (2, 2)))
scala> val joined = a.join(b)

scala> a.partitioner
resO: Option[Partitioner]

None

scala> joined.partitioner

resl: Option[Partitioner] Some (HashPartitioner@286d41c0)



Custom Partitioning

Can define your own subclass of partitioner to
leverage domain-specific knowledge

Example: in PageRank, hash URLs by domain
name, because may links are internal

class DomainPartitioner extends Partitioner {
def numpartitions = 20

def getpartition(key: Any): Int =
parsebomain(key.toString) .hashCode % numPartitions

def equals(other: Any): Boolean =
other.isInstanceOf[DomainPartitioner]



