
Reza Zadeh

Advanced Data Science on Spark

@Reza_Zadeh | http://reza-zadeh.com

Data Science Problem

Data growing faster than processing speeds

Only solution is to parallelize on large clusters

» Wide use in both enterprises and web industry

How do we program these things?

Use a Cluster

Convex Optimization

Matrix Factorization

Machine Learning

Numerical Linear Algebra

Large Graph analysis

Streaming and online
algorithms

Following	
 lectures	
 on	
 http://stanford.edu/~rezab/dao	

	
 	

Slides	
 at	
 http://stanford.edu/~rezab/slides/sparksummit2015
	

Outline

Data Flow Engines and Spark

The Three Dimensions of Machine Learning

Built-in Libraries

MLlib + {Streaming, GraphX, SQL}

Future of MLlib

Traditional Network Programming

Message-passing between nodes (e.g. MPI)

Very difficult to do at scale:

» How to split problem across nodes?

•  Must consider network & data locality

» How to deal with failures? (inevitable at scale)

» Even worse: stragglers (node not failed, but slow)

» Ethernet networking not fast

» Have to write programs for each machine

Rarely used in commodity datacenters

Disk vs Memory

L1 cache reference:

0.5 ns

L2 cache reference:

7 ns

Mutex lock/unlock:

100 ns

Main memory reference:
100 ns

Disk seek:

10,000,000 ns

Network vs Local

Send 2K bytes over 1 Gbps network:

20,000 ns

Read 1 MB sequentially from memory:
250,000 ns

Round trip within same datacenter:

500,000 ns

Read 1 MB sequentially from network:
10,000,000 ns

Read 1 MB sequentially from disk:

30,000,000 ns

Send packet CA->Netherlands->CA:

150,000,000 ns

Data Flow Models

Restrict the programming interface so that the
system can do more automatically

Express jobs as graphs of high-level operators

» System picks how to split each operator into tasks

and where to run each task

» Run parts twice fault recovery

Biggest example: MapReduce

Map

Map

Map

Reduce

Reduce

iter. 1
 iter. 2
 . . .

Input

file system"
read

file system"
write

file system"
read

file system"
write

Input

query 1

query 2

query 3

result 1

result 2

result 3

. . .

file system"
read

Commonly spend 90% of time doing I/O

Example: Iterative Apps

MapReduce evolved

MapReduce is great at one-pass computation,
but inefficient for multi-pass algorithms

No efficient primitives for data sharing

» State between steps goes to distributed file system

» Slow due to replication & disk storage

Verdict

MapReduce algorithms research doesn’t go
to waste, it just gets sped up and easier to
use

Still useful to study as an algorithmic
framework, silly to use directly

Spark Computing Engine

Extends a programming language with a
distributed collection data-structure

» “Resilient distributed datasets” (RDD)

Open source at Apache

» Most active community in big data, with 50+

companies contributing

Clean APIs in Java, Scala, Python

Community: SparkR, being released in 1.4!

Key Idea

Resilient Distributed Datasets (RDDs)

» Collections of objects across a cluster with user

controlled partitioning & storage (memory, disk, ...)

» Built via parallel transformations (map, filter, …)

» The world only lets you make make RDDs such that

they can be:

Automatically rebuilt on failure

Resilient Distributed Datasets (RDDs)

Main idea: Resilient Distributed Datasets

»  Immutable collections of objects, spread across cluster

» Statically typed: RDD[T] has objects of type T

val sc = new SparkContext()!
val lines = sc.textFile("log.txt") // RDD[String]!
!
// Transform using standard collection operations !
val errors = lines.filter(_.startsWith("ERROR")) !
val messages = errors.map(_.split(‘\t’)(2)) !
!
messages.saveAsTextFile("errors.txt") !

lazily evaluated

kicks off a computation

Fault Tolerance

file.map(lambda	
 rec:	
 (rec.type,	
 1))	

	
 	
 	
 	
 .reduceByKey(lambda	
 x,	
 y:	
 x	
 +	
 y)	

	
 	
 	
 	
 .filter(lambda	
 (type,	
 count):	
 count	
 >	
 10)	

filter
reduce
map

In
pu

t fi
le

RDDs track lineage info to rebuild lost data

filter
reduce
map

In
pu

t fi
le

Fault Tolerance

file.map(lambda	
 rec:	
 (rec.type,	
 1))	

	
 	
 	
 	
 .reduceByKey(lambda	
 x,	
 y:	
 x	
 +	
 y)	

	
 	
 	
 	
 .filter(lambda	
 (type,	
 count):	
 count	
 >	
 10)	

RDDs track lineage info to rebuild lost data

Partitioning

file.map(lambda	
 rec:	
 (rec.type,	
 1))	

	
 	
 	
 	
 .reduceByKey(lambda	
 x,	
 y:	
 x	
 +	
 y)	

	
 	
 	
 	
 .filter(lambda	
 (type,	
 count):	
 count	
 >	
 10)	

filter
reduce
map

In
pu

t fi
le

RDDs know their partitioning functions

Known to be"
hash-partitioned

Also known

MLlib: Available algorithms

classification: logistic regression, linear SVM,"
naïve Bayes, least squares, classification tree

regression: generalized linear models (GLMs),
regression tree

collaborative filtering: alternating least squares (ALS),
non-negative matrix factorization (NMF)

clustering: k-means||

decomposition: SVD, PCA

optimization: stochastic gradient descent, L-BFGS

The Three Dimensions

ML Objectives

Almost all machine learning objectives are
optimized using this update

w is a vector of dimension d"
we’re trying to find the best w via optimization

Scaling

1) Data size

2) Number of models

3) Model size

Logistic Regression	

Goal:	
 find	
 best	
 line	
 separating	
 two	
 sets	
 of	
 points	

+

–

+ + +

+

+

+
+ +

– –
–

–

–

–
– –

+

target	

–

random	
 initial	
 line	

Data Scaling

data	
 =	
 spark.textFile(...).map(readPoint).cache()	

	

w	
 =	
 numpy.random.rand(D)	

	

for	
 i	
 in	
 range(iterations):	

	
 	
 	
 	
 gradient	
 =	
 data.map(lambda	
 p:	

	
 	
 	
 	
 	
 	
 	
 	
 (1	
 /	
 (1	
 +	
 exp(-­‐p.y	
 *	
 w.dot(p.x))))	
 *	
 p.y	
 *	
 p.x	

	
 	
 	
 	
).reduce(lambda	
 a,	
 b:	
 a	
 +	
 b)	

	
 	
 	
 	
 w	
 -­‐=	
 gradient	

	

print	
 “Final	
 w:	
 %s”	
 %	
 w	

Separable Updates

Can be generalized for

»  Unconstrained optimization

»  Smooth or non-smooth

»  LBFGS, Conjugate Gradient, Accelerated
Gradient methods, …

Logistic Regression Results

0

500

1000

1500

2000

2500

3000

3500

4000

1
 5
 10
 20
 30

Ru
nn

ing
 T

im
e

(s)

Number of Iterations

Hadoop

Spark

110 s / iteration

first iteration 80 s

further iterations 1 s

100 GB of data on 50 m1.xlarge EC2 machines
	

Behavior with Less RAM

68

.8

58
.1

40
.7

29
.7

11
.5

0

20

40

60

80

100

0%
 25%
 50%
 75%
 100%

Ite
ra

tio
n

tim
e

(s)

% of working set in memory

Lots of little models

Is embarrassingly parallel

Most of the work should be handled by data
flow paradigm

ML pipelines does this

Hyper-parameter Tuning

Model Scaling

Linear models only need to compute the dot
product of each example with model

Use a BlockMatrix to store data, use joins to
compute dot products

Coming in 1.5

Model Scaling

Data joined with model (weight):

Built-in libraries

A General Platform

Spark Core

Spark
Streaming"

real-time

Spark SQL

structured

GraphX

graph

MLlib

machine
learning

…

Standard libraries included with Spark

Benefit for Users

Same engine performs data extraction, model
training and interactive queries

…
DFS
read

DFS
write
pa

rs
e
 DFS
read

DFS
write
tra

in
 DFS
read

DFS
write
qu

er
y

DFS

DFS
read
 pa

rs
e

tra
in

qu
er

y

Separate engines

Spark

Machine Learning Library (MLlib)

70+ contributors
in past year

points = context.sql(“select latitude, longitude from tweets”) !

model = KMeans.train(points, 10) !
!

MLlib algorithms

classification: logistic regression, linear SVM,"
naïve Bayes, classification tree

regression: generalized linear models (GLMs),
regression tree

collaborative filtering: alternating least squares (ALS),
non-negative matrix factorization (NMF)

clustering: k-means||

decomposition: SVD, PCA

optimization: stochastic gradient descent, L-BFGS

GraphX

General graph processing library

Build graph using RDDs of nodes and edges

Run standard algorithms such as PageRank

GraphX

Spark Streaming

Run a streaming computation as a series
of very small, deterministic batch jobs

Spark	

Spark	

Streaming	

batches	
 of	
 X	

seconds	

live	
 data	
 stream	

processed	

results	

•  Chop	
 up	
 the	
 live	
 stream	
 into	
 batches	
 of	

X	
 seconds	
 	

•  Spark	
 treats	
 each	
 batch	
 of	
 data	
 as	

RDDs	
 and	
 processes	
 them	
 using	
 RDD	

opera;ons	

•  Finally,	
 the	
 processed	
 results	
 of	
 the	

RDD	
 opera;ons	
 are	
 returned	
 in	

batches	

Spark Streaming

Run a streaming computation as a series
of very small, deterministic batch jobs

Spark	

Spark	

Streaming	

batches	
 of	
 X	

seconds	

live	
 data	
 stream	

processed	

results	

•  Batch	
 sizes	
 as	
 low	
 as	
 ½	
 second,	
 latency	

~	
 1	
 second	

•  Poten;al	
 for	
 combining	
 batch	

processing	
 and	
 streaming	
 processing	
 in	

the	
 same	
 system	

Spark SQL

// Run SQL statements !
val teenagers = context.sql(!
 "SELECT name FROM people WHERE age >= 13 AND age <= 19") !

!

// The results of SQL queries are RDDs of Row objects !
val names = teenagers.map(t => "Name: " + t(0)).collect() !

MLlib + {Streaming, GraphX, SQL}

A General Platform

Spark Core

Spark
Streaming"

real-time

Spark SQL

structured

GraphX

graph

MLlib

machine
learning

…

Standard libraries included with Spark

MLlib + Streaming

As of Spark 1.1, you can train linear models in
a streaming fashion, k-means as of 1.2

Model weights are updated via SGD, thus
amenable to streaming

More work needed for decision trees

MLlib + SQL

df = context.sql(“select latitude, longitude from tweets”) !

model = pipeline.fit(df) !

DataFrames in Spark 1.3! (March 2015)

Powerful coupled with new pipeline API

MLlib + GraphX

Future of MLlib

Goals

Tighter integration with DataFrame and spark.ml API

Accelerated gradient methods & Optimization interface

Model export: PMML (current export exists in Spark 1.3, but
not PMML, which lacks distributed models)

Scaling: Model scaling

