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Data Science Problem

Data growing faster than processing speeds

Only solution is to parallelize on large clusters

» Wide use in both enterprises and web industry


How do we program these things?




Use a Cluster


Convex Optimization


Matrix Factorization


Machine Learning





Numerical Linear Algebra


Large Graph analysis


Streaming and online 
algorithms


Following	
  lectures	
  on	
  http://stanford.edu/~rezab/dao	
  
	
  	
  

Slides	
  at	
  http://stanford.edu/~rezab/slides/sparksummit2015  
	
  



Outline

Data Flow Engines and Spark

The Three Dimensions of Machine Learning

Built-in Libraries


MLlib + {Streaming, GraphX, SQL}

Future of MLlib









Traditional Network Programming


Message-passing between nodes (e.g. MPI)

Very difficult to do at scale:

» How to split problem across nodes?


•  Must consider network & data locality

» How to deal with failures? (inevitable at scale)

» Even worse: stragglers (node not failed, but slow)

» Ethernet networking not fast

» Have to write programs for each machine


Rarely used in commodity datacenters




Disk vs Memory

L1 cache reference: 
 
 
0.5 ns


L2 cache reference: 
 
 
7 ns


Mutex lock/unlock: 
 
 
100 ns


Main memory reference: 
100 ns


Disk seek: 

 
 
 
 
 
10,000,000 ns




Network vs Local

Send 2K bytes over 1 Gbps network: 
 
20,000 ns


Read 1 MB sequentially from memory: 
250,000 ns


Round trip within same datacenter: 
 
500,000 ns


Read 1 MB sequentially from network: 
10,000,000 ns


Read 1 MB sequentially from disk: 
 
 
30,000,000 ns


Send packet CA->Netherlands->CA: 
 
150,000,000 ns







Data Flow Models

Restrict the programming interface so that the 
system can do more automatically

Express jobs as graphs of high-level operators

» System picks how to split each operator into tasks 

and where to run each task

» Run parts twice fault recovery


Biggest example: MapReduce
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file system"
read


Commonly spend 90% of time doing I/O


Example: Iterative Apps




MapReduce evolved

MapReduce is great at one-pass computation, 
but inefficient for multi-pass algorithms

No efficient primitives for data sharing

» State between steps goes to distributed file system

» Slow due to replication & disk storage




Verdict

MapReduce algorithms research doesn’t go 
to waste, it just gets sped up and easier to 
use




Still useful to study as an algorithmic 
framework, silly to use directly




Spark Computing Engine

Extends a programming language with a 
distributed collection data-structure

» “Resilient distributed datasets” (RDD)


Open source at Apache

» Most active community in big data, with 50+ 

companies contributing


Clean APIs in Java, Scala, Python

Community: SparkR, being released in 1.4!




Key Idea

Resilient Distributed Datasets (RDDs)

» Collections of objects across a cluster with user 

controlled partitioning & storage (memory, disk, ...)

» Built via parallel transformations (map, filter, …)

» The world only lets you make make RDDs such that 

they can be:


Automatically rebuilt on failure




Resilient Distributed Datasets (RDDs)


Main idea: Resilient Distributed Datasets

»  Immutable collections of objects, spread across cluster

» Statically typed: RDD[T] has objects of type T


val sc = new SparkContext()!
val lines = sc.textFile("log.txt")   // RDD[String]!
!
// Transform using standard collection operations !
val errors = lines.filter(_.startsWith("ERROR")) !
val messages = errors.map(_.split(‘\t’)(2)) !
!
messages.saveAsTextFile("errors.txt") !

lazily evaluated


kicks off a computation




Fault Tolerance


file.map(lambda	
  rec:	
  (rec.type,	
  1))	
  
	
  	
  	
  	
  .reduceByKey(lambda	
  x,	
  y:	
  x	
  +	
  y)	
  
	
  	
  	
  	
  .filter(lambda	
  (type,	
  count):	
  count	
  >	
  10)	
  

filter
reduce
map


In
pu

t fi
le


RDDs track lineage info to rebuild lost data




filter
reduce
map


In
pu

t fi
le


Fault Tolerance


file.map(lambda	
  rec:	
  (rec.type,	
  1))	
  
	
  	
  	
  	
  .reduceByKey(lambda	
  x,	
  y:	
  x	
  +	
  y)	
  
	
  	
  	
  	
  .filter(lambda	
  (type,	
  count):	
  count	
  >	
  10)	
  

RDDs track lineage info to rebuild lost data




Partitioning


file.map(lambda	
  rec:	
  (rec.type,	
  1))	
  
	
  	
  	
  	
  .reduceByKey(lambda	
  x,	
  y:	
  x	
  +	
  y)	
  
	
  	
  	
  	
  .filter(lambda	
  (type,	
  count):	
  count	
  >	
  10)	
  

filter
reduce
map


In
pu

t fi
le


RDDs know their partitioning functions


Known to be"
hash-partitioned


Also known




MLlib: Available algorithms

classification: logistic regression, linear SVM,"
naïve Bayes, least squares, classification tree

regression: generalized linear models (GLMs), 
regression tree

collaborative filtering: alternating least squares (ALS), 
non-negative matrix factorization (NMF)

clustering: k-means||

decomposition: SVD, PCA

optimization: stochastic gradient descent, L-BFGS








The Three Dimensions




ML Objectives


Almost all machine learning objectives are 
optimized using this update






w is a vector of dimension d"
we’re trying to find the best w via optimization




Scaling


1) Data size



2) Number of models




3) Model size






Logistic Regression	
  
Goal:	
  find	
  best	
  line	
  separating	
  two	
  sets	
  of	
  points	
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Data Scaling

data	
  =	
  spark.textFile(...).map(readPoint).cache()	
  
	
  
w	
  =	
  numpy.random.rand(D)	
  
	
  
for	
  i	
  in	
  range(iterations):	
  
	
  	
  	
  	
  gradient	
  =	
  data.map(lambda	
  p:	
  
	
  	
  	
  	
  	
  	
  	
  	
  (1	
  /	
  (1	
  +	
  exp(-­‐p.y	
  *	
  w.dot(p.x))))	
  *	
  p.y	
  *	
  p.x	
  
	
  	
  	
  	
  ).reduce(lambda	
  a,	
  b:	
  a	
  +	
  b)	
  
	
  	
  	
  	
  w	
  -­‐=	
  gradient	
  
	
  
print	
  “Final	
  w:	
  %s”	
  %	
  w	
  



Separable Updates

Can be generalized for

»  Unconstrained optimization

»  Smooth or non-smooth


»  LBFGS, Conjugate Gradient, Accelerated 
Gradient methods, …




Logistic Regression Results
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Number of Iterations


Hadoop

Spark


110 s / iteration


first iteration 80 s

further iterations 1 s


100 GB of data on 50 m1.xlarge EC2 machines 
	
  



Behavior with Less RAM
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Lots of little models

Is embarrassingly parallel



Most of the work should be handled by data 
flow paradigm




ML pipelines does this




Hyper-parameter Tuning




Model Scaling

Linear models only need to compute the dot 
product of each example with model




Use a BlockMatrix to store data, use joins to 
compute dot products




Coming in 1.5




Model Scaling

Data joined with model (weight):








Built-in libraries




A General Platform


Spark Core


Spark 
Streaming"

real-time


Spark SQL

structured


GraphX

graph


MLlib

machine 
learning


…


Standard libraries included with Spark




Benefit for Users

Same engine performs data extraction, model 
training and interactive queries
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Separate engines


Spark




Machine Learning Library (MLlib)


70+ contributors 
in past year


points = context.sql(“select latitude, longitude from tweets”) !

model = KMeans.train(points, 10) !
!



MLlib algorithms

classification: logistic regression, linear SVM,"
naïve Bayes, classification tree

regression: generalized linear models (GLMs), 
regression tree

collaborative filtering: alternating least squares (ALS), 
non-negative matrix factorization (NMF)

clustering: k-means||

decomposition: SVD, PCA

optimization: stochastic gradient descent, L-BFGS




GraphX




General graph processing library



Build graph using RDDs of nodes and edges




Run standard algorithms such as PageRank


GraphX




Spark Streaming

Run a streaming computation as a series 
of very small, deterministic batch jobs


Spark	
  

Spark	
  
Streaming	
  

batches	
  of	
  X	
  
seconds	
  

live	
  data	
  stream	
  

processed	
  
results	
  

•  Chop	
  up	
  the	
  live	
  stream	
  into	
  batches	
  of	
  
X	
  seconds	
  	
  

•  Spark	
  treats	
  each	
  batch	
  of	
  data	
  as	
  
RDDs	
  and	
  processes	
  them	
  using	
  RDD	
  
opera;ons	
  

•  Finally,	
  the	
  processed	
  results	
  of	
  the	
  
RDD	
  opera;ons	
  are	
  returned	
  in	
  
batches	
  



Spark Streaming

Run a streaming computation as a series 
of very small, deterministic batch jobs


Spark	
  

Spark	
  
Streaming	
  

batches	
  of	
  X	
  
seconds	
  

live	
  data	
  stream	
  

processed	
  
results	
  

•  Batch	
  sizes	
  as	
  low	
  as	
  ½	
  second,	
  latency	
  
~	
  1	
  second	
  

•  Poten;al	
  for	
  combining	
  batch	
  
processing	
  and	
  streaming	
  processing	
  in	
  
the	
  same	
  system	
  



Spark SQL

// Run SQL statements !
val teenagers = context.sql( !
  "SELECT name FROM people WHERE age >= 13 AND age <= 19") !

!

// The results of SQL queries are RDDs of Row objects !
val names = teenagers.map(t => "Name: " + t(0)).collect() !







MLlib + {Streaming, GraphX, SQL}




A General Platform


Spark Core


Spark 
Streaming"

real-time


Spark SQL

structured


GraphX

graph


MLlib

machine 
learning


…


Standard libraries included with Spark




MLlib + Streaming

As of Spark 1.1, you can train linear models in 
a streaming fashion, k-means as of 1.2




Model weights are updated via SGD, thus 
amenable to streaming




More work needed for decision trees




MLlib + SQL

df = context.sql(“select latitude, longitude from tweets”) !

model = pipeline.fit(df) !

DataFrames in Spark 1.3! (March 2015)

Powerful coupled with new pipeline API




MLlib + GraphX








Future of MLlib




Goals

Tighter integration with DataFrame and spark.ml API





Accelerated gradient methods & Optimization interface





Model export: PMML (current export exists in Spark 1.3, but 
not PMML, which lacks distributed models)





Scaling: Model scaling 



