Distributed Computing
with Open-Source Software

Reza Zadeh €@ databricks

1UIViE S K
INSTITUzr COMPUTATIONAL & p Qr

MATHEMATICAL ENGINEERING
at STANFORD UNIVERSITY

Presented at Infosys OSSmosis

Problem

Data growing faster than processing speeds

Only solution is to parallelize on large clusters
» \Wide use in both enterprises and web industry

Hovv do we program these thmgs’?

'0}

Outline

Data flow vs. traditional network programming
Limitations of MapReduce

Spark computing engine

Machine Learning Example

Current State of Spark Ecosystem

Data flow vs.

Traditional network programming

Traditional Network Programming

Message-passing between nodes (e.g. MPI)

Very difficult to do at scale:
» How to split problem across nodes?

»
»
»
»

* Must consider network & data locality

How to deal with failures? (inevitable at scale)
—ven worse: stragglers

“thernet networking not fast

Have to write programs per machine

Rarely used in commodity datacenters

Data Flow Models

Restrict the programming interface so that the
system can do more automatically

Express jobs as graphs of high-level operators
» System picks how to split each operator into tasks
and where to run each task
» Run parts twice fault recovery

Biggest example:

MapReduce

Example MapReduce Algorithms

Matrix-vector multiplication
Power iteration (e.g. PageRank)
Gradient descent methods
Stochastic SVD

Tall skinny QR

Many others!

Why Use a Data Flow Engine”

Ease of programming
» High-level functions instead of message passing

Wide deployment
» More common than MPI, especially “near” data

Scalability to very largest clusters

Examples:
Pig, Hive,Scalding, Storm

Limitations of MapReduce

Limitations of MapReduce

MapReduce is great at one-pass computation,
out inefficient for multi-pass algorithms

No efficient primitives for data sharing
» State between steps goes to distributed file system
» Slow due to replication & disk storage

Example: lterative Apps

file system file system file system file system
read write read write
! !
Input
file system , result 1
result 2
result 3

[Commonly spend 90% of time doing I/0O]

Result

While MapReduce is simple, it can require
asymptotically more communication or [/O

Spark computing engine

Spark Computing Engine

Extends a programming language with a

distributed collection data-structure
» “Resilient distributed datasets” (RDD)

Open source at Apache
» Most active community in big data,
with 50+ companies contributing

Clean APIls in Java, Scala, Python
Community: SparkR

Resllient

Distributed

Datasets (

q

Main idea: Resilient Distributed Datasets
» Immutable collections of objects, spread across cluster
» Statically typed: RDD[T] has objects of type T

val sc = new SparkContext()

val lines = sc.textFile("log.txt")

//

//

val errors = lines.filter(_.startsWith("ERROR"))

val messages = errors.map(_.split(‘\t")(2))
lazily evaluated

messages.saveAsTextFile("errors.txt")

kicks off a computation

BS)

Key ldea

Resilient Distributed Datasets (RDDs)
» Collections of objects across a cluster with user
controlled partitioning & storage (memory, disk, ...)
» Built via parallel transformations (map, filter, ...)
» The world only lets you make make RDDs such that
they can be:

Automatically rebuilt on failure

Python, Java, Scala, R

// Scala:

val lines = sc.textFile(...)
Tines.filter(x => x.contains(“ERROR”)).count()

// Java (better in java8!):

JavaRDD<String> lines = sc.textFile(...);
Tines.filter(new Function<String, Boolean>() {
Boolean call(String s) {
return s.contains(“error”);
}

1) .count();

Fault Tolerance

RDDs track lineage info to rebuild lost data

file.map(lambda rec: (rec.type, 1))
.reduceByKey(lambda x, y: X + y)
.filter(lambda (type, count): count > 10)

reduce

Input file

:
SIEE

rars-
SEE

Fault Tolerance

RDDs track lineage info to rebuild lost data

file.map(lambda rec: (rec.type, 1))
.reduceByKey(lambda x, y: X + y)
.filter(lambda (type, count): count > 10)

map reduce

=
=
B

ESk
-
SEE

fEEE

)
TN
H—HY
BSE

SiSIE

Machine Learning example

Logistic Regression

wew—a-) g(wz,y)
i=1

val points = spark.textFile(...).map(parsePoint).cache()
var w = Vector.zeros(d)

for (1 <= 1 to numlterations) {
val gradient = points.map { p =>
(1 /7 (1 + exp(-p.y * w.dot(p.x)) - 1) * p.y * p.X
).reduce(_ + _)
w -= alpha * gradient

}

L ogistic Regression Results

first iteration 80 s
4000 further iterations 1 s

3500
© 3000 - 10 s/ iteration
2500 /
=, 2000 N = Hadoop

1500 — = “ Spark
1000 — |
500

0 —

1 5 10 20 30
Number of Iterations

ime

Runnin

100 GB of data on 50 m1.xlarge EC2 machines

Behavior with Less RAM

100 -
380 -

H68.8
— 58.1

60 -

— 40.7

40 -

lteration time (S)

E 11.5

H 29.7

20 -

O —
0% 25% 50% 75% 100%
% of working set in memory

Benefit for Users

Same engine performs data extraction, model
training and interactive queries

Separate engines

train

Spark sl @ python
_ EScala

parse
train
w,
1
wn

State of the Spark ecosystem

Spark Community

Most active open source
community in big data

200+ developers,

50+ companies contributing

YAHOO! (inte) N\ T=

Adobe

Q.redhat. amazon b Y

webservices™

cloudera oatasTAX:

meze €2 (learStory webtrends

Alubaba com

blZ@ CONVIVA DATABRICKS

150

100

50

Contributors in past year

Spork

hadaza
map Fleduc:e

Project Activity

1600

Spark

1400

1200

1000

3800

HDFS

600

400

MapReduce

200

Commits

Activity in past 6 months

Continuing Growth

75

2011 2012 2013 2014

Contributors per month to Spark

source: ohloh.net

A General Platform

Standard libraries included with Spark

Spark Spark MLIib
SQL Streaming machine
structured real-time learning

Spark Core

Conclusion

Data flow engines are becoming an important
platform for numerical algorithms

While early models like MapReduce were
inefficient, new ones like Spark close this gap

More info: spark.apache.org

S,car‘l,(\Z

