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Data Flow Models

Restrict the programming interface so that the 
system can do more automatically

Express jobs as graphs of high-level operators

» System picks how to split each operator into tasks 

and where to run each task

» Run parts twice fault recovery


Biggest example: MapReduce
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Spark Computing Engine

Extends a programming language with a 
distributed collection data-structure

» “Resilient distributed datasets” (RDD)


Open source at Apache

» Most active community in big data, with 50+ 

companies contributing


Clean APIs in Java, Scala, Python

Community: SparkR, being released in 1.4!




Key Idea

Resilient Distributed Datasets (RDDs)

» Collections of objects across a cluster with user 

controlled partitioning & storage (memory, disk, ...)

» Built via parallel transformations (map, filter, …)

» The world only lets you make make RDDs such that 

they can be:


Automatically rebuilt on failure




Resilient Distributed Datasets (RDDs)


Main idea: Resilient Distributed Datasets

»  Immutable collections of objects, spread across cluster

» Statically typed: RDD[T] has objects of type T


val sc = new SparkContext()!
val lines = sc.textFile("log.txt")   // RDD[String]!
!
// Transform using standard collection operations !
val errors = lines.filter(_.startsWith("ERROR")) !
val messages = errors.map(_.split(‘\t’)(2)) !
!
messages.saveAsTextFile("errors.txt") !

lazily evaluated


kicks off a computation




MLlib: Available algorithms

classification: logistic regression, linear SVM,"
naïve Bayes, least squares, classification tree

regression: generalized linear models (GLMs), 
regression tree

collaborative filtering: alternating least squares (ALS), 
non-negative matrix factorization (NMF)

clustering: k-means||

decomposition: SVD, PCA

optimization: stochastic gradient descent, L-BFGS








The Three Dimensions




ML Objectives


Almost all machine learning objectives are 
optimized using this update




Scaling


1) Data size



2) Number of models




3) Model size






Logistic Regression	
  
Goal:	
  find	
  best	
  line	
  separating	
  two	
  sets	
  of	
  points	
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Data Scaling

data	
  =	
  spark.textFile(...).map(readPoint).cache()	
  
	
  
w	
  =	
  numpy.random.rand(D)	
  
	
  
for	
  i	
  in	
  range(iterations):	
  
	
  	
  	
  	
  gradient	
  =	
  data.map(lambda	
  p:	
  
	
  	
  	
  	
  	
  	
  	
  	
  (1	
  /	
  (1	
  +	
  exp(-­‐p.y	
  *	
  w.dot(p.x))))	
  *	
  p.y	
  *	
  p.x	
  
	
  	
  	
  	
  ).reduce(lambda	
  a,	
  b:	
  a	
  +	
  b)	
  
	
  	
  	
  	
  w	
  -­‐=	
  gradient	
  
	
  
print	
  “Final	
  w:	
  %s”	
  %	
  w	
  



Separable Updates

Can be generalized for

»  Unconstrained optimization

»  Smooth or non-smooth


»  LBFGS, Conjugate Gradient, Accelerated 
Gradient methods, …




Logistic Regression Results
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Number of Iterations


Hadoop

Spark


110 s / iteration


first iteration 80 s

further iterations 1 s


100 GB of data on 50 m1.xlarge EC2 machines 
	
  



Behavior with Less RAM
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Lots of little models

Is embarrassingly parallel



Most of the work should be handled by data 
flow paradigm




ML pipelines does this




Hyper-parameter Tuning




Model Scaling

Linear models only need to compute the dot 
product of each example with model




Use a BlockMatrix to store data, use joins to 
compute dot products




Coming in 1.5




Model Scaling

Data joined with model (weight):




Optimization

At least two large classes of optimization 
problems humans can solve:"



»  Convex

»  Spectral








Optimization Example: Spectral Program




Spark PageRank

Given directed graph, compute node 
importance. Two RDDs: 

»  Neighbors (a sparse graph/matrix)


»  Current guess (a vector)

"
Using cache(), keep neighbor list in RAM






 
  
  


 


Spark PageRank

Using cache(), keep neighbor lists in RAM

Using partitioning, avoid repeated hashing


Neighbors

(id, edges)


Ranks

(id, rank)


join


partitionBy


join
 join

…




PageRank Results
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Hadoop


Basic Spark


Spark + Controlled 
Partitioning




Spark PageRank


Generalizes	
  to	
  Matrix	
  Multiplication,	
  opening	
  many	
  algorithms	
  
from	
  Numerical	
  Linear	
  Algebra	
  







Distributing Matrix Computations




Distributing Matrices

How to distribute a matrix across machines?

»  By Entries (CoordinateMatrix)

»  By Rows (RowMatrix)


»  By Blocks (BlockMatrix)

All of Linear Algebra to be rebuilt using these 
partitioning schemes


As	
  of	
  version	
  1.3	
  



Distributing Matrices

Even the simplest operations require thinking 
about communication e.g. multiplication




How many different matrix multiplies needed?

»  At least one per pair of {Coordinate, Row, 

Block, LocalDense, LocalSparse} = 10

»  More because multiplies not commutative










Singular Value Decomposition on Spark




Singular Value 
Decomposition




Singular Value Decomposition

Two cases

»  Tall and Skinny

»  Short and Fat (not really)


»  Roughly Square

SVD method on RowMatrix takes care of 
which one to call.









Tall and Skinny SVD




Tall and Skinny SVD


Gets	
  us	
  	
  	
  V	
  and	
  the	
  
singular	
  values	
  

Gets	
  us	
  	
  	
  U	
  by	
  one	
  
matrix	
  multiplication	
  



Square SVD

ARPACK: Very mature Fortran77 package for 
computing eigenvalue decompositions"



JNI interface available via netlib-java"



Distributed using Spark – how?




Square SVD via ARPACK

Only interfaces with distributed matrix via 
matrix-vector multiplies




The result of matrix-vector multiply is small.

The multiplication can be distributed. 







Square SVD


With 68 executors and 8GB memory in each, 
looking for the top 5 singular vectors










MLlib + {Streaming, GraphX, SQL}




A General Platform


Spark Core


Spark 
Streaming"

real-time


Spark SQL

structured


GraphX

graph


MLlib

machine 
learning


…


Standard libraries included with Spark




Benefit for Users

Same engine performs data extraction, model 
training and interactive queries
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MLlib + Streaming

As of Spark 1.1, you can train linear models in 
a streaming fashion, k-means as of 1.2




Model weights are updated via SGD, thus 
amenable to streaming




More work needed for decision trees




MLlib + SQL

df = context.sql(“select latitude, longitude from tweets”) !

model = pipeline.fit(df) !

DataFrames in Spark 1.3! (March 2015)

Powerful coupled with new pipeline API




MLlib + GraphX








Future of MLlib




Goals for next version

Tighter integration with DataFrame and spark.ml API





Accelerated gradient methods & Optimization interface





Model export: PMML (current export exists in Spark 1.3, but 
not PMML, which lacks distributed models)





Scaling: Model scaling (e.g. via Parameter Servers)




Most active open source community in big data


200+ developers, 50+ companies contributing


Spark Community


Giraph
 Storm
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Continuing Growth


source: ohloh.net


Contributors per month to Spark




Spark and ML

Spark has all its roots in research, so we hope 
to keep incorporating new ideas!






Model Broadcast




Model Broadcast


Use	
  via	
  .value	
  

Call	
  sc.broadcast	
  


