
Reza Zadeh

The Three Dimensions of Scalable
Machine Learning

@Reza_Zadeh | http://reza-zadeh.com

Outline

Data Flow Engines and Spark

The Three Dimensions of Machine Learning

Matrix Computations

MLlib + {Streaming, GraphX, SQL}

Future of MLlib

Data Flow Models

Restrict the programming interface so that the
system can do more automatically

Express jobs as graphs of high-level operators

» System picks how to split each operator into tasks

and where to run each task

» Run parts twice fault recovery

Biggest example: MapReduce

Map

Map

Map

Reduce

Reduce

Spark Computing Engine

Extends a programming language with a
distributed collection data-structure

» “Resilient distributed datasets” (RDD)

Open source at Apache

» Most active community in big data, with 50+

companies contributing

Clean APIs in Java, Scala, Python

Community: SparkR, being released in 1.4!

Key Idea

Resilient Distributed Datasets (RDDs)

» Collections of objects across a cluster with user

controlled partitioning & storage (memory, disk, ...)

» Built via parallel transformations (map, filter, …)

» The world only lets you make make RDDs such that

they can be:

Automatically rebuilt on failure

Resilient Distributed Datasets (RDDs)

Main idea: Resilient Distributed Datasets

»  Immutable collections of objects, spread across cluster

» Statically typed: RDD[T] has objects of type T

val sc = new SparkContext()!
val lines = sc.textFile("log.txt") // RDD[String]!
!
// Transform using standard collection operations !
val errors = lines.filter(_.startsWith("ERROR")) !
val messages = errors.map(_.split(‘\t’)(2)) !
!
messages.saveAsTextFile("errors.txt") !

lazily evaluated

kicks off a computation

MLlib: Available algorithms

classification: logistic regression, linear SVM,"
naïve Bayes, least squares, classification tree

regression: generalized linear models (GLMs),
regression tree

collaborative filtering: alternating least squares (ALS),
non-negative matrix factorization (NMF)

clustering: k-means||

decomposition: SVD, PCA

optimization: stochastic gradient descent, L-BFGS

The Three Dimensions

ML Objectives

Almost all machine learning objectives are
optimized using this update

Scaling

1) Data size

2) Number of models

3) Model size

Logistic Regression	

Goal:	
 find	
 best	
 line	
 separating	
 two	
 sets	
 of	
 points	

+

–

+ + +

+

+

+
+ +

– –
–

–

–

–
– –

+

target	

–

random	
 initial	
 line	

Data Scaling

data	
 =	
 spark.textFile(...).map(readPoint).cache()	

	

w	
 =	
 numpy.random.rand(D)	

	

for	
 i	
 in	
 range(iterations):	

	
 	
 	
 	
 gradient	
 =	
 data.map(lambda	
 p:	

	
 	
 	
 	
 	
 	
 	
 	
 (1	
 /	
 (1	
 +	
 exp(-­‐p.y	
 *	
 w.dot(p.x))))	
 *	
 p.y	
 *	
 p.x	

	
 	
 	
 	
).reduce(lambda	
 a,	
 b:	
 a	
 +	
 b)	

	
 	
 	
 	
 w	
 -­‐=	
 gradient	

	

print	
 “Final	
 w:	
 %s”	
 %	
 w	

Separable Updates

Can be generalized for

»  Unconstrained optimization

»  Smooth or non-smooth

»  LBFGS, Conjugate Gradient, Accelerated
Gradient methods, …

Logistic Regression Results

0

500

1000

1500

2000

2500

3000

3500

4000

1
 5
 10
 20
 30

Ru
nn

ing
 T

im
e

(s)

Number of Iterations

Hadoop

Spark

110 s / iteration

first iteration 80 s

further iterations 1 s

100 GB of data on 50 m1.xlarge EC2 machines
	

Behavior with Less RAM

68

.8

58
.1

40
.7

29
.7

11
.5

0

20

40

60

80

100

0%
 25%
 50%
 75%
 100%

Ite
ra

tio
n

tim
e

(s)

% of working set in memory

Lots of little models

Is embarrassingly parallel

Most of the work should be handled by data
flow paradigm

ML pipelines does this

Hyper-parameter Tuning

Model Scaling

Linear models only need to compute the dot
product of each example with model

Use a BlockMatrix to store data, use joins to
compute dot products

Coming in 1.5

Model Scaling

Data joined with model (weight):

Optimization

At least two large classes of optimization
problems humans can solve:"

»  Convex

»  Spectral

Optimization Example: Spectral Program

Spark PageRank

Given directed graph, compute node
importance. Two RDDs:

»  Neighbors (a sparse graph/matrix)

»  Current guess (a vector)

"
Using cache(), keep neighbor list in RAM

Spark PageRank

Using cache(), keep neighbor lists in RAM

Using partitioning, avoid repeated hashing

Neighbors

(id, edges)

Ranks

(id, rank)

join

partitionBy

join
 join

…

PageRank Results

171

72

23

0

50

100

150

200

Ti
m

e
pe

r i
te

ra
tio

n
(s)

Hadoop

Basic Spark

Spark + Controlled
Partitioning

Spark PageRank

Generalizes	
 to	
 Matrix	
 Multiplication,	
 opening	
 many	
 algorithms	

from	
 Numerical	
 Linear	
 Algebra	

Distributing Matrix Computations

Distributing Matrices

How to distribute a matrix across machines?

»  By Entries (CoordinateMatrix)

»  By Rows (RowMatrix)

»  By Blocks (BlockMatrix)

All of Linear Algebra to be rebuilt using these
partitioning schemes

As	
 of	
 version	
 1.3	

Distributing Matrices

Even the simplest operations require thinking
about communication e.g. multiplication

How many different matrix multiplies needed?

»  At least one per pair of {Coordinate, Row,

Block, LocalDense, LocalSparse} = 10

»  More because multiplies not commutative

Singular Value Decomposition on Spark

Singular Value
Decomposition

Singular Value Decomposition

Two cases

»  Tall and Skinny

»  Short and Fat (not really)

»  Roughly Square

SVD method on RowMatrix takes care of
which one to call.

Tall and Skinny SVD

Tall and Skinny SVD

Gets	
 us	
 	
 	
 V	
 and	
 the	

singular	
 values	

Gets	
 us	
 	
 	
 U	
 by	
 one	

matrix	
 multiplication	

Square SVD

ARPACK: Very mature Fortran77 package for
computing eigenvalue decompositions"

JNI interface available via netlib-java"

Distributed using Spark – how?

Square SVD via ARPACK

Only interfaces with distributed matrix via
matrix-vector multiplies

The result of matrix-vector multiply is small.

The multiplication can be distributed.

Square SVD

With 68 executors and 8GB memory in each,
looking for the top 5 singular vectors

MLlib + {Streaming, GraphX, SQL}

A General Platform

Spark Core

Spark
Streaming"

real-time

Spark SQL

structured

GraphX

graph

MLlib

machine
learning

…

Standard libraries included with Spark

Benefit for Users

Same engine performs data extraction, model
training and interactive queries

…
DFS
read

DFS
write
pa

rs
e
 DFS
read

DFS
write
tra

in
 DFS
read

DFS
write
qu

er
y

DFS

DFS
read
 pa

rs
e

tra
in

qu
er

y

Separate engines

Spark

MLlib + Streaming

As of Spark 1.1, you can train linear models in
a streaming fashion, k-means as of 1.2

Model weights are updated via SGD, thus
amenable to streaming

More work needed for decision trees

MLlib + SQL

df = context.sql(“select latitude, longitude from tweets”) !

model = pipeline.fit(df) !

DataFrames in Spark 1.3! (March 2015)

Powerful coupled with new pipeline API

MLlib + GraphX

Future of MLlib

Goals for next version

Tighter integration with DataFrame and spark.ml API

Accelerated gradient methods & Optimization interface

Model export: PMML (current export exists in Spark 1.3, but
not PMML, which lacks distributed models)

Scaling: Model scaling (e.g. via Parameter Servers)

Most active open source community in big data

200+ developers, 50+ companies contributing

Spark Community

Giraph
 Storm

0

50

100

150

Contributors in past year

Continuing Growth

source: ohloh.net

Contributors per month to Spark

Spark and ML

Spark has all its roots in research, so we hope
to keep incorporating new ideas!

Model Broadcast

Model Broadcast

Use	
 via	
 .value	

Call	
 sc.broadcast	

