Distributed Computing with Spark

Reza Zadeh DATABRICKS

Stanford Sp Ql"l,(\z

Thanks to Matei Zaharia

Outline

Data flow vs. traditional network programming
Limitations of MapReduce

Spark computing engine

Numerical computing on Spark

Ongoing work

Problem

Data growing faster than processing speeds

Only solution is to parallelize on large clusters
» \Wide use in both enterprises and web industry

Traditional Network Programming

Message-passing between nodes (e.g. MPI)

Very difficult to do at scale:
» How to split problem across nodes”?

»
»
»

* Must consider network & data locality
How to deal with failures? (inevitable at scale)

—ven worse: stragglers (node not failed, but slow)

“thernet networking not fast

Rarely used in commodity datacenters

Data Flow Models

Restrict the programming interface so that the
system can do more automatically

Express jobs as graphs of high-level operators
» System picks how to split each operator into tasks
and where to run each task
» Run parts twice fault recovery

Biggest example: MapReduce %

MapReduce Numerical Algorithms

Matrix-vector multiplication
Power iteration (e.g. PageRank)
Gradient descent methods
Stochastic SVD

Tall skinny QR

Many others!

Why Use a Data Flow Engine”

Ease of programming
» High-level functions instead of message passing

Wide deployment

» More common than MPI, especially “near” data

Scalability to very largest clusters
» Even HPC world is now concerned about resilience

Examples: Pig, Hive, Scalding, Storm

Outline

Data flow vs. traditional network programming
Limitations of MapReduce

Spark computing engine

Numerical computing on Spark

Ongoing work

Limitations of MapReduce

MapReduce is great at one-pass computation,
out inefficient for multi-pass algorithms

No efficient primitives for data sharing
» State between steps goes to distributed file system
» Slow due to replication & disk storage

Example: lterative Apps

file system file system file system file system
read write read write
Y Y
Input
file system result 1
read

result 2
result 3

[Commonly spend 90% of time doing |/O 1

Example: PageRank

Repeatedly multiply sparse matrix and vector

Requires repeatedly hashing together page

adjacency lists and rank vector

Same file grouped
over and over

Neighbors
(id, edges)

Ranks
(id, rank) .

iteration 1 iteration 2 iteration 3

Result

While MapReduce is simple, it can require
asymptotically more communication or [/O

Outline

Data flow vs. traditional network programming
Limitations of MapReduce

Spark computing engine

Numerical computing on Spark

Ongoing work

Spark Computing Engine

Extends MapReduce model with primitives for

efficient data sharing
» “Resilient distributed datasets”

Open source at Apache
» Most active community in big data, with 50+
companies contributing

Clean APIls in Java, Scala, Python

Resilient Distributed Datasets (RDDs)

Collections of objects stored across a cluster
User-controlled partitioning & storage (memory, disk, ...)
Automatically rebuilt on failure

urls = spark.textFile(“hdfs://...”) Known to be

records = urls.map(lambda s: (s, 1)) hash-partitioned

counts = records.reduceByKey(lambda a, b: a + b)

bigCounts = counts.filter(lambda (url, cnt): cnt > 10) Also known
map reduce filter j

bigCounts.cache()

g

bigCounts.filter(
lambda (k,v): “news” in k).count()

Input file

bigCounts.join(otherPartitionedRDD)

Key ldea

Resilient Distributed Datasets (RDDs)
» Collections of objects across a cluster with user
controlled partitioning & storage (memory, disk, ...)
» Built via parallel transformations (map, filter, ...)
» Automatically rebuilt on failure

Example: Log Mining

Load error messages from a log into memory,
then interactively search for various patterns

lines = spark.textFile(*hdfs://...”)
errors = lines.filter(lambda s: s.startswith(“ERROR™))
messages = errors.map(lambda s: s.split(“\t”)[2])

messages.cache()

messages.filter(lambda s: “foo” in s).count()

messages.filter(lambda s: “bar” in s).count()

Result: full-text search of Wikipedia in
0.5 sec (vs 20 s for on-disk data)

Fault Tolerance

RDDs track lineage info to rebuild lost data

file.map(lambda rec: (rec.type, 1))
.reduceByKey(lambda x, y: X + y)
.filter(lambda (type, count): count > 10)

reduce filter

Input file

.....
SISIS
SIS

Isr=
SES
SIS

N
H 1)
S
SIS

SiSIE

Fault Tolerance

RDDs track lineage info to rebuild lost data

file.map(lambda rec: (rec.type, 1))
.reduceByKey(lambda x, y: x + y)
.filter(lambda (type, count): count > 10)

reduce filter

Input file

-
T

EISH

ESIR
ESIS
e

I\
=)
==
NS
-
SIS
et

H
=]
BSS

Sis

Partitioning

RDDs know their partitioning functions

file.map(lambda rec: (rec.type, 1))
.reduceByKey(lambda x, y: X + y) Known to be

.filter(lambda (type, count): count > 10) hash-partitioned

‘{/ﬂﬁ;y Akx>t;?wm

reduce

Input file

nnnnn
SISIS
SISIE

bt
BiES
=~

H 11N
IEISIAN
)
EISIS

SEE

Outline

Data flow vs. traditional network programming
Limitations of MapReduce

Spark computing engine

Numerical computing on Spark

Ongoing work

Logistic Regression

data = spark.textFile(...).map(readPoint).cache()
w = numpy.random.rand(D)

for i in range(iterations):
gradient = data.map(lambda p:
(1 / (1 + exp(-p.y * w.dot(p.x)))) * p.y * p.x
).reduce(lambda a, b: a + b)
w -= gradient

print “Final w: %s” % w

L ogistic Regression Results

)
&L

ime

—
(@)

Runnin

4000
3500
3000
2500
2000
1500
1000
500
0

5 10 20
Number of lterations

110 s/ iteration

/

Hadoop
W Spark

\

first iteration 80 s
further iterations 1 s

30

PageRank

Using cache(), keep neighbor lists in RAM

Using partitioning, avoid repeated hashing

rtitionBy .
—e®
Neighbors @ \
(id, edges)
@%\\ A\
= Ve \
Ranks
(id, rank) E

join join join

PageRank

Using cache(), keep neighbor lists in RAM

Using partitioning, avoid repeated hashing

partitionBy g

Neighbors
(id, edges)

Ranks
(id, rank)

N

@
@
@

e
A\ k

same
node

PageRank

Using cache(), keep neighbor lists in RAM

Using partitioning, avoid repeated hashing

partitionBy g

C

Neighbors @ 'ﬁ \

(id, edges) b ‘g ’ \ \\ \
= A\ N\

S A
| > =

join join join

Ranks
(id, rank)

(X

PageRank Code

RDD of (id, neighbors) pairs
links = spark.textFile(...).map(parsePage)
.partitionBy(128).cache()

ranks = links.mapValues(lambda v: 1.0) # RDD of (id, rank)

for i in range(ITERATIONS):
ranks = links.join(ranks).flatMap(
lambda (id, (links, rank)):
[(d, rank/links.size) for d in links]
) .reduceByKey(lambda a, b: a + b)

PageRank Results

Time per iteration (s)

200

—
o)
@)

—_—
o
o

o)
o

o

171

23

“ Hadoop

W Basic Spark

Spark + Controlled
Partitioning

Alternating Least Squares

-0

1. Start with random A, B;

2. Solve for A, to minimize ||R - A,B. ||
3. Solve for B, to minimize ||R - A,B,'||
4, Repeat until convergence

ALS on Spark

-0

Cache 2 copies of R in memory, one
partitioned by rows and one by columns

Keep A & B partitioned in corresponding way
Operate on blocks to lower communication

ALS Results

Total Time (s)

5000

4000

3000

2000

1000

0

4208

“ Mahout / Hadoop
w Spark (Scala)
GraphlLab (C++)

Benefit for Users

Same engine performs data extraction, model
training and interactive queries

Separate engines

train

Spark sl @ python
_ EScala

parse
train
w,
1
wn

Outline

Data flow vs. traditional network programming
Limitations of MapReduce

Spark computing engine

Numerical computing on Spark

Ongoing work

Spark Community

Most active open source community in big data

200+ developers, 50+ companies contributing

YAHOO! ¢inied TAY 2

Adobe

@ rednat ' amazon b A
webservices™
cloudera oatasTAX:

mzee €2 (ClearStory webtrends

Alibaba.com

DATABRICKS

bize con

150

100

50

Contributors in past year

Built-in ML Library: MLIib

classification: logistic regression, linear SVM,
nalve Bayes, classification tree

regression: generalized linear models (GLMs),
regression tree

collaborative filtering: alternating least squares (ALS),
non-negative matrix factorization (NMF)

clustering: k-means||
decomposition: tall-skinny SVD, PCA
optimization: stochastic gradient descent, L-BFGS

Ongoing Work in MLIib

multiclass decision trees

stats library (e.g. stratified sampling, ScaRSR)
ADMM
LDA

40 contributors since project started Sept ‘13

SVD via ARPACK

Very mature Fortran/7 package for
computing eigenvalue decompositions

JNI interface available via netlib-java

Distributed using Spark distributed matrix-
vector multiplies!

Convex Optimization

from cvxpy import *

Create two scalar optimization variables.

Distribute CVX by x = Variable()
. . - Variabl
backing CVXPY with At
Create two constraints.
PySpark constraints = [x + y == 1,
X -y > 1]
Easy-to-express # Form objective.
distributable convex B = RS = o

prog rams # Form and solve problem.

prob = Problem(obj, constraints)
prob.solve() # Returns the optimal value.
print "status:", prob.status

Need to know less print "optimal value", prob.value
math to Optimize print "optimal var", x.value, y.value

complicated status: optimal

. . optimal value 0.999999989323
ObJECtlves optimal var ©.999999998248 1.75244914951e-09

Research Projects

GraphX: graph computation via data flow

SparkR: R interface to Spark, and distributed
matrix operations

ML pipelines: high-level machine learning APIs

Applications: neuroscience, traffic, genomics,
general convex optimization

Spark and Research

Spark has all its roots in research, so we hope
to keep incorporating new ideas!

Conclusion

Data flow engines are becoming an important
platform for numerical algorithms

While early models like MapReduce were

iInefficient, new ones |i

More info: spark.apac

Ne.0org

Spa

Ke Spark close this gap

K

r

Behavior with Less RAM

100

lteration time (S)
EAN @)) Qo
- - -

N
@)

@)

H68.8

0%

— 58.1

— 40.7

25% 50% 5%
% of working set in memory

100%

Spark in Scala and Java

// Scala:

val lines = sc.textFile(...)
Tines.filter(x => x.contains(“ERROR”)).count()

// Java:

JavaRDD<String> lines = sc.textFile(...);
lines.filter(new Function<String, Boolean>() {
Boolean call(String s) {
return s.contains(“error”);
}

}).count(Q);

