Distributed Computing with Spark

Reza Zadeh

Stanford

Databricks

Spark

Thanks to Matei Zaharia
Outline

Data flow vs. traditional network programming

Limitations of MapReduce

Spark computing engine

Numerical computing on Spark

Ongoing work
Problem

Data growing faster than processing speeds

Only solution is to parallelize on large clusters
 » Wide use in both enterprises and web industry

How do we program these things?
Traditional Network Programming

Message-passing between nodes (e.g. MPI)

Very difficult to do at scale:

» How to split problem across nodes?
 • Must consider network & data locality

» How to deal with failures? (inevitable at scale)

» Even worse: stragglers (node not failed, but slow)

» Ethernet networking not fast

Rarely used in commodity datacenters
Data Flow Models

Restrict the programming interface so that the system can do more automatically

Express jobs as graphs of high-level operators
 » System picks how to split each operator into tasks and where to run each task
 » Run parts twice fault recovery

Biggest example: MapReduce
MapReduce Numerical Algorithms

Matrix-vector multiplication
Power iteration (e.g. PageRank)
Gradient descent methods
Stochastic SVD
Tall skinny QR

Many others!
Why Use a Data Flow Engine?

Ease of programming
 » High-level functions instead of message passing

Wide deployment
 » More common than MPI, especially “near” data

Scalability to very largest clusters
 » Even HPC world is now concerned about resilience

Examples: Pig, Hive, Scalding, Storm
Outline

Data flow vs. traditional network programming

Limitations of MapReduce

Spark computing engine

Numerical computing on Spark

Ongoing work
Limitations of MapReduce

MapReduce is great at one-pass computation, but inefficient for multi-pass algorithms

No efficient primitives for data sharing
 » State between steps goes to distributed file system
 » Slow due to replication & disk storage
Example: Iterative Apps

Commonly spend 90% of time doing I/O
Example: PageRank

Repeatedly multiply sparse matrix and vector

Requires repeatedly hashing together page adjacency lists and rank vector
Result

While MapReduce is simple, it can require asymptotically more communication or I/O.
Outline

Data flow vs. traditional network programming
Limitations of MapReduce
Spark computing engine
Numerical computing on Spark
Ongoing work
Spark Computing Engine

Extends MapReduce model with primitives for efficient data sharing
 » “Resilient distributed datasets”

Open source at Apache
 » Most active community in big data, with 50+ companies contributing

Clean APIs in Java, Scala, Python
Resilient Distributed Datasets (RDDs)

Collections of objects stored across a cluster
User-controlled partitioning & storage (memory, disk, …)
Automatically rebuilt on failure

urls = spark.textFile("hdfs://...")
records = urls.map(lambda s: (s, 1))
counts = records.reduceByKey(lambda a, b: a + b)
bigCounts = counts.filter(lambda (url, cnt): cnt > 10)

bigCounts.cache()

bigCounts.filter(
 lambda (k,v): "news" in k).count()

bigCounts.join(otherPartitionedRDD)
Key Idea

Resilient Distributed Datasets (RDDs)

» Collections of objects across a cluster with user controlled partitioning & storage (memory, disk, ...)
» Built via parallel transformations (map, filter, ...)
» Automatically rebuilt on failure
Example: Log Mining

Load error messages from a log into memory, then interactively search for various patterns

```
lines = spark.textFile("hdfs://...")
errors = lines.filter(lambda s: s.startswith("ERROR"))
messages = errors.map(lambda s: s.split("\t")[2])
messages.cache()
```

```
messages.filter(lambda s: "foo" in s).count()
messages.filter(lambda s: "bar" in s).count()
...  
```

Result: full-text search of Wikipedia in 0.5 sec (vs 20 s for on-disk data)
Fault Tolerance

RDDs track *lineage* info to rebuild lost data

```python
file.map(lambda rec: (rec.type, 1))
  .reduceByKey(lambda x, y: x + y)
  .filter(lambda (type, count): count > 10)
```
Fault Tolerance

RDDs track *lineage* info to rebuild lost data

```python
file.map(lambda rec: (rec.type, 1))
  .reduceByKey(lambda x, y: x + y)
  .filter(lambda (type, count): count > 10)
```
Partitioning

RDDs know their partitioning functions

```python
file.map(lambda rec: (rec.type, 1))
  .reduceByKey(lambda x, y: x + y)
  .filter(lambda (type, count): count > 10)
```

Known to be hash-partitioned

Also known
Outline

Data flow vs. traditional network programming
Limitations of MapReduce
Spark computing engine
Numerical computing on Spark
Ongoing work
Logistic Regression

data = spark.textFile(...).map(readPoint).cache()

w = numpy.random.rand(D)

for i in range(iterations):
 gradient = data.map(lambda p:
 (1 / (1 + exp(-p.y * w.dot(p.x))))) * p.y * p.x
 .reduce(lambda a, b: a + b)

 w -= gradient

print "Final w: %s" % w
Logistic Regression Results

- Running Time (s)
 - Number of Iterations
 - Hadoop: 110 s / iteration
 - Spark: first iteration 80 s, further iterations 1 s
PageRank

Using `cache()`, keep neighbor lists in RAM

Using partitioning, avoid repeated hashing
PageRank

Using cache(), keep neighbor lists in RAM

Using partitioning, avoid repeated hashing
PageRank

Using cache(), keep neighbor lists in RAM

Using partitioning, avoid repeated hashing
PageRank Code

RDD of (id, neighbors) pairs
links = spark.textFile(...).map(parsePage)
 .partitionBy(128).cache()

ranks = links.mapValues(lambda v: 1.0) # RDD of (id, rank)

for i in range(ITERATIONS):
 ranks = links.join(ranks).flatMap(
 lambda (id, (links, rank)):
 [(d, rank/links.size) for d in links]
).reduceByKey(lambda a, b: a + b)
PageRank Results

- Hadoop: 171 seconds
- Basic Spark: 72 seconds
- Spark + Controlled Partitioning: 23 seconds
Alternating Least Squares

1. Start with random A_1, B_1
2. Solve for A_2 to minimize $\|R - A_2B_1^T\|$
3. Solve for B_2 to minimize $\|R - A_2B_2^T\|$
4. Repeat until convergence

$$R = A^T B^T$$
ALS on Spark

Cache 2 copies of R in memory, one partitioned by rows and one by columns

Keep A & B partitioned in corresponding way

Operate on blocks to lower communication
ALS Results

![Bar Chart]

- Mahout / Hadoop: 4208 s
- Spark (Scala): 481 s
- GraphLab (C++): 297 s

Total Time (s)
Benefit for Users

Same engine performs data extraction, model training and interactive queries

Separate engines
Outline

Data flow vs. traditional network programming
Limitations of MapReduce
Spark computing engine
Numerical computing on Spark
Ongoing work
Spark Community

Most active open source community in big data

200+ developers, 50+ companies contributing
Built-in ML Library: MLlib

classification: logistic regression, linear SVM, naïve Bayes, classification tree

regression: generalized linear models (GLMs), regression tree

collaborative filtering: alternating least squares (ALS), non-negative matrix factorization (NMF)

clustering: k-means

decomposition: tall-skinny SVD, PCA

optimization: stochastic gradient descent, L-BFGS
Ongoing Work in MLlib

multiclass decision trees
stats library (e.g. stratified sampling, ScaRSR)
ADMM
LDA

40 contributors since project started Sept ‘13
SVD via ARPACK

Very mature Fortran77 package for computing eigenvalue decompositions

JNI interface available via netlib-java

Distributed using Spark distributed matrix-vector multiplies!
Convex Optimization

Distribute CVX by backing CVXPY with PySpark

Easy-to-express distributable convex programs

Need to know less math to optimize complicated objectives

```python
from cvxpy import *

# Create two scalar optimization variables.
x = Variable()
y = Variable()

# Create two constraints.
constraints = [x + y == 1,
              x - y >= 1]

# Form objective.
obj = Minimize(square(x - y))

# Form and solve problem.
prob = Problem(obj, constraints)
prob.solve()  # Returns the optimal value.
print "status:", prob.status
print "optimal value", prob.value
print "optimal var", x.value, y.value

status: optimal
optimal value 0.999999989323
optimal var 0.999999998248 1.75244914951e-09
```
Research Projects

GraphX: graph computation via data flow

SparkR: R interface to Spark, and distributed matrix operations

ML pipelines: high-level machine learning APIs

Applications: neuroscience, traffic, genomics, general convex optimization
Spark and Research

Spark has all its roots in research, so we hope to keep incorporating new ideas!
Conclusion

Data flow engines are becoming an important platform for numerical algorithms.

While early models like MapReduce were inefficient, new ones like Spark close this gap.

More info: spark.apache.org
Behavior with Less RAM

Iteration time (s) vs. % of working set in memory

- 0%: 68.8
- 25%: 58.1
- 50%: 40.7
- 75%: 29.7
- 100%: 11.5
Spark in Scala and Java

// Scala:
val lines = sc.textFile(...)
lines.filter(x => x.contains("ERROR")).count()

// Java:
JavaRDD<String> lines = sc.textFile(...);
lines.filter(new Function<String, Boolean>() {
 Boolean call(String s) {
 return s.contains("error");
 }
}).count();