PREDICTING MARKET VOLATILITY FROM FEDERAL RESERVE BOARD MEETING MINUTES

Reza Bosagh Zadeh and Andreas Zollmann
Lab Advisers: Noah Smith and Bryan Routledge
GOALS

- Make Money!
 - Not really.

- Find interesting patterns in meeting minutes
 - Meetings happen roughly 10 times a year
 - Interest rate changes are decided, along with other qualitative assessments of US Economy
 - Minutes freely available on the web for meetings from 1967 to 2008

- “Idea”: Use established tools from NLP and ML
Efficient market hypothesis:
- excess returns per unit risk cannot be consistently generated using public information
- Stock prices react on news in split-seconds
- Automated analysis can outperform humans because of processing speed

Strongest form of EMH: all market correction due to insiders
- Gidofalvi and Elkan (2003): News-based prediction model has highest predictive accuracy over the 20 minutes trading window before the publication time of the respective article
Previous Attempts

<table>
<thead>
<tr>
<th>Prototype idea</th>
<th>Prototype 3.1</th>
<th>Prototype 3.2</th>
<th>Prototype 3.3</th>
<th>Prototype 3.4</th>
<th>Prototype 3.5</th>
<th>Prototype 3.6</th>
<th>Prototype 3.7</th>
<th>Prototype 3.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aims to forecast…</td>
<td>price trends</td>
<td>price trends</td>
<td>volatilities</td>
<td>price trends</td>
<td>price trends</td>
<td>price trends</td>
<td>price trends</td>
<td>volatilities</td>
</tr>
<tr>
<td>Underlying</td>
<td>equity index</td>
<td>single stock</td>
<td>single stock</td>
<td>single stock</td>
<td>exchange rate</td>
<td>single stock</td>
<td>single stock</td>
<td>single stock</td>
</tr>
<tr>
<td>Forecasting horizon</td>
<td>24 hours</td>
<td>1 hour</td>
<td>N/A</td>
<td>1 hour</td>
<td>3 hours</td>
<td>1 hour</td>
<td>N/A</td>
<td>15 minutes</td>
</tr>
</tbody>
</table>

Text mining parameter								
Feature definition	manually	automated	manually	automated	manually	automated	automated	semi-automated
Number of features	423	N/A	145	1000	400	N/A	200	85
Feature granularity	tuple (words)	terms	tuple (terms)	single words	tuple (words)	single words	single words	tuple (terms)
Primary classifier	Naive Bayes	Naive Bayes	decision rules	Naive Bayes	decision rules	linear SVM	regression	polynomial SVM
Number of categories	3	5	39	3	3	5 (training: 3)	2	4 (training: 3)

Input data								
Information age	2 - 15 hours	0 hours	0 - 24 hours	0 hours	0 - 2 hours	0 hours	0 hours	0 hours
Text analyzed	headline, body	headline, body	headline	headline, body	headline	headline, body	headline, body	headline, body
Labeling	automated	automated	manually	automated	automated	automated	automated	automated
Price frequency	daily close	10 min.	daily close	10 min.	60 min.	intraday	daily close	15 sec.

Test								
Training/Test split	3 months rolling	3 / 15 months	8 / 5 months	5.5 / 2 months	1 month rolling	6 / 1 month(s)	cross validation (90% / 10%)	cross validation (90% / 10%)
Prototype vs. random	44% vs. 33%	N/A	N/A	40% vs. 33%	50% vs. 33%	N/A	61% vs. 30%	45% vs. 33%
Rolling per year	- 600	> 100’000	(200)	< 600	N/A	N/A	N/A	< 500
Profit per roundtrip as reported	13 bps	23 bps	(first phase: 10 bps)	10 bps	N/A	N/A	N/A	29 bps
Market	DJIA, Nikkei, FTSE, HS, ST	127 stocks (USA)	constraints: Russell 3000	constraints: DJIA	USD/DEM and USD/JPY	614 stocks (Hong Kong)	constraints: DAX100	constraints: S&P500

Past work: features used in text-based prediction

- BOW, BObigrams, NPs, NNPs, NEs (frequency, TF-IDF score, or information gain)

- Lerman et al. (COLING’08):
 - News-focus features:
 - change in occurrence frequency of a word in the current day's news coverage compared to the average news coverage of the past N days
 - Dependency features
CLASSIFICATION VS. REGRESSION

- Most past work: predicts increase or decrease in prices/volatility
- Kogan et al. (NAACL’09): predict indicator (stock volatility) directly using Support Vector Regression
TAPPING THE FED

- Our aim: use FOMC meeting minutes to predict financial indicators
- No previous attempts to our knowledge
- Boukus & Rosenberg: market participants do extract complex signals from these minutes
 - found correlations of e.g. Treasury yields with specific themes of the meeting minutes using Latent Semantic Analysis
OUR ATTEMPT

Predicting Prices is too hard. Focus on Volatility:

\[\text{vol} = \frac{1}{n-1} \sum_{i=1}^{n} [\ln \text{return}(t + i) - 1/n \sum_{j=1}^{n} \ln \text{return}(t + j)]^2, \]
where \(t \) is the time of the meeting and
\[\text{return}(t) = \frac{\text{price}(t)}{\text{price}(t - 1)} - 1. \]

Predict volatility of
- S&P 500
- 13-week Treasury Bills
- 10-year Treasury Notes
Machine Learning Setting

- Take meeting minutes from minutes held on day t, and predict volatility n (look-ahead) days ahead.

- Not I.I.D. training data at all. But let’s hide that under the carpet.

- Features:
 - Bag of Words: unigrams, bigrams
 - Dependency fragments
 - Volatility from n days ago
Dependency features

- (S
 (NP Business inventories)
 (VP climbed)
 (ADVP significantly further)
 (PP in)
 (NP September))) .)

- Using seedword ‘inventories’, extract fragments:
 Inventories ➔ climbed, business ➔ inventories ➔ climbed, inventories ➔ climbed ← further
FEATURES: BAG OF WORDS

- **TF-IDF:**
 \[
 (tf-idf)_{i,j} = tf_{i,j} \times idf_i
 \]

 \[
 tf_{i,j} = \frac{n_{i,j}}{\sum_k n_{k,j}}
 \]
 \[
 idf_i = \log \frac{|D|}{|\{d : t_i \in d\}|}
 \]

 - IDF dampens effect of common words

- **Log1P:**
 \[
 \log |1 + \frac{n_{i,j}}{\sum_k n_{k,j}}|
 \]

 - Don’t really need IDF since we already removed stop-words
DATA MINING

- Obtained meeting text from PDF and HTML files available at
 http://www.federalreserve.gov/monetarypolicy/fomc.htm

- Our corpus available at
 http://rezab.ca/useful/fomc_minutes.html

- Stemmed using Porter 2 stemmer. Removed stop-words using available online list.
PREDICT WHAT?

- Regression:
 - Actual value of the volatility

- Classification:
 - Two classes, volatility goes UP or DOWN

First set of experiments:
Classification for different indices.
S&P 500 – Classification – Short Periods

Higher is better.
10 Year Treasury Note Classification – Short Periods

[Graph showing data points for base and 10yr-tnote over a period of 11 years.]
13 Week Treasury Bills – Classification – Short Periods
13 Week Treasury Bills – Classification – Long Periods
Example decision tree

This had 64% Accuracy
SVM Prominent Terms

negative:
-0.5677 * (normalized) w_action
-0.554 * (normalized) w_mnufactur
-0.4998 * (normalized) w_sowli
-0.4965 * (normalized) w_craven
-0.4947 * (normalized) w_recent
-0.4771 * (normalized) w_outcom
-0.3755 * (normalized) w_crude
-0.3732 * (normalized) w_institut
-0.3718 * (normalized) w_affect
-0.3694 * (normalized) w_climb
-0.3551 * (normalized) w_canadian
-0.3533 * (normalized) w_cumul

positive:
0.3664 * (normalized) w_surg
0.3679 * (normalized) w_polici
0.3735 * (normalized) w_warehous
0.375 * (normalized) w_resum
0.3864 * (normalized) w_job
0.4039 * (normalized) w_impliment
0.4054 * (normalized) w_outlook
0.4059 * (normalized) w_struckmey
0.4068 * (normalized) w_cutback
0.6298 * (normalized) w_downward
0.6536 * (normalized) w_curtail
Conclusions from Classification

- Shorter Periods are easier to predict than longer periods

- 13 Week Treasury bills are easier to predict than S&P 500 and 10 Year Treasury notes

- Bigrams don’t help in our case

- Dependency fragments don’t help either

Now onto Regression...
S&P 500 – Regression – Short Periods

Now lower is better.
S&P 500 – Regression – Long Periods
CONCLUSIONS FROM REGRESSION

- Regression for S&P 500 is hard – can’t beat simple straw man baseline using only words

- Oddly enough, training on the previous volatility does worse than just predicting the previous volatility.
 - Over-fitting happening with just two dimensions – very surprising, a testament to the difficulty of the problem.