Dimension Independent Matrix Square using MapReduce (DIMSUM)
 Reza Zadeh

Stanford
Institute for Computational and Mathematical Engineering

Introduction

- Given $\boldsymbol{m} \times \boldsymbol{n}$ matrix \boldsymbol{A} with entries in $[0,1]$ and $\boldsymbol{m} \gg \boldsymbol{n}$, compute $\boldsymbol{A}^{T} \boldsymbol{A}$.

$$
\boldsymbol{A}=\left(\begin{array}{cccc}
a_{1,1} & a_{1,2} & \cdots & a_{1, n} \\
a_{2,1} & a_{2,2} & \cdots & a_{2, n} \\
\vdots & \vdots & \cdots & \vdots \\
a_{m, 1} & a_{m, 2} & \cdots & a_{m, n}
\end{array}\right)
$$

- A is tall and skinny, example values $m=10^{12}, \boldsymbol{n}=10^{6}$.
- \boldsymbol{A} has sparse rows, each row has at most L nonzeros.
- \boldsymbol{A} is stored across thousands of machines and cannot be streamed through a single machine.

Guarantees

- Preserve singular values of $\boldsymbol{A}^{T} \boldsymbol{A}$ with ϵ relative error paying shuffle size $O\left(n^{2} / \epsilon^{2}\right)$ and reduce-key complexity $O\left(n / \epsilon^{2}\right)$. i.e. independent of \boldsymbol{m}.
- Preserve specific entries of $\boldsymbol{A}^{T} \boldsymbol{A}$, then we can reduce the shuffle size to $O(n \log (n) / s)$ and reduce-key complexity to $O(\log (n) / s)$ where s is the minimum similarity for the entries being estimated. Similarity can be via Cosine, Dice, Overlap, or Jaccard.

Computing All Pairs of Dot Products

- We have to find dot products between all pairs of columns of \boldsymbol{A}
- We prove results for general matrices, but can do better for those entries with $\cos (i, j) \geq s$
- Cosine similarity: a widely used definition for "similarity" between two vectors

$$
\cos (i, j)=\frac{c_{i}^{T} c_{j}}{\left\|c_{i}\right\|\left\|c_{j}\right\|}
$$

- $\boldsymbol{c}_{\boldsymbol{i}}$ is the \boldsymbol{i} 'th column of \boldsymbol{A}

MapReduce

- Input gets dished out to the mappers roughly equally. Two performance measures
- 1) Shuffle size: shuffling the data output by the mappers to the correct reducer is expensive
- 2) Largest reduce-key: can't send too much of the data to a single reducer

Naive Implementation

Algorithm 1 NaiveMapper($\boldsymbol{r}_{\boldsymbol{i}}$)
for all pairs $\left(a_{i j}, a_{i k}\right)$ in r_{i} do
Emit $\left(\left(c_{j}, c_{k}\right) \rightarrow a_{i j} a_{i k}\right)$
end for
Algorithm 2 NaiveReducer $\left(\left(c_{i}, c_{j}\right),\left\langle v_{1}, \ldots, v_{R}\right\rangle\right)$
output $\boldsymbol{c}_{i}^{\top} \boldsymbol{c}_{j} \rightarrow{ }_{i=1}^{R} \boldsymbol{v}_{i}$

- Shuffle size: $O\left(m L^{2}\right)$ and largest reduce-key: $O(m)$
- Both depend on \boldsymbol{m}, the larger dimension, and are intractable for $m=10^{12}, L=100$.
- We'll bring both down via clever sampling

DIMSUM

Algorithm 3 DIMSUMMapper $\left(\boldsymbol{r}_{\boldsymbol{i}}\right)$

for all pairs $\left(a_{i j}, a_{i k}\right)$ in r_{i} do

$$
\begin{aligned}
& \text { With probability } \min \left(1, \gamma_{\left\|c_{j}\right\| \mid c_{k} \|}\right) \\
& \text { emit }\left(\left(c_{j}, c_{k}\right) \rightarrow a_{i j} a_{i k}\right)
\end{aligned}
$$

end for
Algorithm 4 DIMSUMReducer $\left(\left(c_{i}, c_{j}\right),\left\langle v_{1}, \ldots, v_{R}\right\rangle\right)$
if ${ }_{\left\|c_{i}\right\|\left\|c_{j}\right\|}^{\gamma}>1$ then
output $\boldsymbol{b}_{i j} \rightarrow \underset{\left\|c_{i}\right\|\left\|c_{j}\right\|}{ }{ }_{i=1}^{R} v_{i}$
else

$$
\text { output } \boldsymbol{b}_{i j} \rightarrow \frac{1}{\gamma}{ }_{i}{ }_{i=1}^{R} \boldsymbol{v}_{i}
$$

Analysis for DIMSUM

Four things to prove:

- Shuffle size: $\boldsymbol{O}(n L \gamma)$
- Largest reduce-key: $\boldsymbol{O}(\gamma)$
- The sampling scheme preserves similarities when $\gamma=\Omega(\log (n) / s)$
- The sampling scheme preserves singular values when $\gamma=\Omega\left(n / \epsilon^{2}\right)$

Shuffle Size and Largest Reduce Key

Let \boldsymbol{H} be the smallest nonzero entry in magnitude, after all entries of \boldsymbol{A} have been scaled to be in $[0,1]$

- E.g. for $\{0,1\}$ matrices, we have $\boldsymbol{H}=\mathbf{1}$
- Shuffle size is bounded by $O\left(n L \gamma / H^{2}\right)$
- Largest reduce-key is bounded by $\boldsymbol{O}(\gamma)$

Correctness

- Since higher magnitude columns are sampled with lower probability, are we guaranteed to obtain correct results w.h.p.?
- Yes. By setting γ correctly.
- Preserve similarities when $\gamma=\Omega(\log (n) / s)$
- Preserve singular values when $\gamma=\Omega\left(n / \epsilon^{2}\right)$

Theorem

Let \boldsymbol{A} be an $\boldsymbol{m} \times \boldsymbol{n}$ tall and skinny $(\boldsymbol{m}>\boldsymbol{n})$ matrix. If $\gamma=\Omega\left(\boldsymbol{n} / \epsilon^{2}\right)$ and \boldsymbol{D} a diagonal matrix with entries $\boldsymbol{d}_{i j}=\left\|\boldsymbol{c}_{i}\right\|$, then the matrix \boldsymbol{B} output by DIMSUM satisfies,

$$
\frac{\left\|D B D-A^{T} \boldsymbol{A}\right\|_{2}}{\left\|\boldsymbol{A}^{T} \boldsymbol{A}\right\|_{2}} \leq \epsilon
$$

with probability at least $\mathbf{1 / 2}$.

Theorem

For any two columns $\boldsymbol{c}_{\boldsymbol{i}}$ and \boldsymbol{c}_{j} having $\operatorname{\operatorname {cos}}\left(\boldsymbol{c}_{i}, \boldsymbol{c}_{j}\right) \geq \boldsymbol{s}$, let \boldsymbol{B} be the output of DIMSUM with entries $\boldsymbol{b}_{i j}=\frac{1}{\gamma} \varepsilon_{k=1}^{m} X_{i j k}$ with $\boldsymbol{X}_{i j k}$ as the indicator for the \boldsymbol{k}^{\prime} 'th coin in the call to DIMSUMMapper. Now if $\gamma=\Omega(\alpha / s)$, then we have,

$$
\operatorname{Pr}\left[\left\|c_{i}\right\|\left\|c_{j}\right\| b_{i j}>(1+\delta)\left[A^{T} A\right]_{i j}\right] \leq\left(\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right)^{\alpha}
$$

and

$$
\left.\operatorname{Pr} \mid\left\|c_{i}\right\|\left\|c_{j}\right\| b_{i, j}<(1-\delta)\left[A^{T} A\right]_{i j}\right]<\exp \left(-\alpha \delta^{2} / 2\right)
$$

Live Applications

- Large scale live at twitter.com

Experiments

