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Introduction

» Given m X n matrix A with entries in [0, 1] and m > n, compute AT A.
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> A is tall and skinny, example values m = 10'%, n = 10°.

» A has sparse rows, each row has at most L nonzeros.

» A is stored across thousands of machines and cannot be streamed through a

single machine.
Guarantees

» Preserve singular values of AT A with € relative error paying shuffle size
O(n?/€?) and reduce-key complexity O(n/€?). i.e. independent of m.
» Preserve specific entries of AT A, then we can reduce the shuffle size to

O(nlog(n)/s) and reduce-key complexity to O(log(n)/s) where s is the

minimum similarity for the entries being estimated. Similarity can be via
Cosine, Dice, Overlap, or Jaccard.

Computing All Pairs of Dot Products

» We have to find dot products between all pairs of columns of A

» We prove results for general matrices, but can do better for those entries
with cos(i,j) > s
» Cosine similarity: a widely used definition for “similarity” between two

vectors -
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» c; is the i’"th column of A

MapReduce

» Input gets dished out to the mappers roughly equally. Two performance
measures

» 1) Shuffle size: shuffling the data output by the mappers to the correct
reducer is expensive

» 2) Largest reduce-key: can’t send too much of the data to a single reducer

Naive Implementation

Algorithm 1 NaiveMapper(r;)

for all pairs (ajj, aik) in r; do
Emit ((c;, ck) — ajjaix)
end for

Algorithm 2 NaiveReducer((c;j, ¢j), (Viy..., VR))
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» Shuffle size: O(mL?) and largest reduce-key: O(m)
» Both depend on m, the larger dimension, and are intractable for

m = 10'%, L = 100.
» We'll bring both down via clever sampling

DIMSUM

Algorithm 3 DIMSUMMapper(r;)

for all pairs (ajj, aik) in r; do
With probability min 1,y
J
emit ((c¢j, ck) — ajjaix)
end for

Algorithm 4 DIMSUMReducer((c;, ¢;), (v1, - . -

if 7 |>1then
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Analysis for DIMSUM

Four things to prove:
» Shuffle size: O(nlL~)
» Largest reduce-key: O(~)
» The sampling scheme preserves similarities when v = Q(log(n)/s)
» The sampling scheme preserves singular values when v = Q(n/€?)

Shuffle Size and Largest Reduce Key

» Let H be the smallest nonzero entry in magnitude, after all entries of A
have been scaled to be in [0, 1]

» E.g. for {0, 1} matrices, we have H =1
» Shuffle size is bounded by O(nL~/H?)

» Largest reduce-key is bounded by O(+)
Correctness

» Since higher magnitude columns are sampled with lower probability, are we
guaranteed to obtain correct results w.h.p.?

» Yes. By setting ~v correctly.
» Preserve similarities when v = €(log(n)/s)
» Preserve singular values when v = Q(n/€?)

Theorem

Let A be an m X n tall and skinny (m > n) matrix. If v = Q(n/€?)
and D a diagonal matrix with entries djj = ||c;||, then the matrix B

output by DIMSUM satisfies,
|DBD — ATA||;
|AT A2
with probability at least 1/2.

Theorem

For any two columns c; and c; having cos(c;, ¢cj) > s, let B be the output
of DIMSUM with entries b;; = %z’;’zl ik with Xjji as the indicator for the
k 'th coin in the call to DIMSUMMapper. Now if v = Q(a/s), then we
have,
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Experiments
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