
Dimension Independent Matrix Square using
MapReduce (DIMSUM)

Reza Zadeh
Institute for Computational and Mathematical Engineering

Introduction

I Given m × n matrix A with entries in [0, 1] and m � n, compute ATA.

A =

a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n

...
am,1 am,2 · · · am,n

I A is tall and skinny, example values m = 1012, n = 106.
I A has sparse rows, each row has at most L nonzeros.
I A is stored across thousands of machines and cannot be streamed through a

single machine.

Guarantees

I Preserve singular values of ATA with ε relative error paying shuffle size
O(n2/ε2) and reduce-key complexity O(n/ε2). i.e. independent of m.

I Preserve specific entries of ATA, then we can reduce the shuffle size to
O(n log(n)/s) and reduce-key complexity to O(log(n)/s) where s is the
minimum similarity for the entries being estimated. Similarity can be via
Cosine, Dice, Overlap, or Jaccard.

Computing All Pairs of Dot Products

I We have to find dot products between all pairs of columns of A
I We prove results for general matrices, but can do better for those entries

with cos(i , j) ≥ s
I Cosine similarity: a widely used definition for “similarity” between two

vectors
cos(i , j) =

cT
i cj

||ci||||cj||
I ci is the i ′th column of A

MapReduce

I Input gets dished out to the mappers roughly equally. Two performance
measures

I 1) Shuffle size: shuffling the data output by the mappers to the correct
reducer is expensive

I 2) Largest reduce-key: can’t send too much of the data to a single reducer

Naive Implementation

Algorithm 1 NaiveMapper(ri)

for all pairs (aij, aik) in ri do
Emit ((cj, ck)→ aijaik)

end for

Algorithm 2 NaiveReducer((ci, cj), 〈v1, . . . , vR〉)
output cT

i cj →
R∑

i=1
vi

I Shuffle size: O(mL2) and largest reduce-key: O(m)
I Both depend on m, the larger dimension, and are intractable for

m = 1012, L = 100.
I We’ll bring both down via clever sampling

DIMSUM

Algorithm 3 DIMSUMMapper(ri)

for all pairs (aij, aik) in ri do
With probability min

1, γ 1
||cj||||ck||

emit ((cj, ck)→ aijaik)

end for

Algorithm 4 DIMSUMReducer((ci, cj), 〈v1, . . . , vR〉)
if γ
||ci ||||cj|| > 1 then

output bij → 1
||ci ||||cj||

R∑
i=1

vi
else

output bij → 1
γ

R∑
i=1

vi
end if

Analysis for DIMSUM

Four things to prove:
I Shuffle size: O(nLγ)
I Largest reduce-key: O(γ)
I The sampling scheme preserves similarities when γ = Ω(log(n)/s)
I The sampling scheme preserves singular values when γ = Ω(n/ε2)

Shuffle Size and Largest Reduce Key

I Let H be the smallest nonzero entry in magnitude, after all entries of A
have been scaled to be in [0, 1]

I E.g. for {0, 1} matrices, we have H = 1
I Shuffle size is bounded by O(nLγ/H2)
I Largest reduce-key is bounded by O(γ)

Correctness

I Since higher magnitude columns are sampled with lower probability, are we
guaranteed to obtain correct results w.h.p.?

I Yes. By setting γ correctly.
I Preserve similarities when γ = Ω(log(n)/s)
I Preserve singular values when γ = Ω(n/ε2)

Theorem

Let A be an m × n tall and skinny (m > n) matrix. If γ = Ω(n/ε2)
and D a diagonal matrix with entries dii = ||ci||, then the matrix B
output by DIMSUM satisfies,

||DBD − ATA||2
||ATA||2

≤ ε

with probability at least 1/2.

Theorem

For any two columns ci and cj having cos(ci, cj) ≥ s, let B be the output
of DIMSUM with entries bij = 1

γ
∑m
k=1 Xijk with Xijk as the indicator for the

k’th coin in the call to DIMSUMMapper. Now if γ = Ω(α/s), then we
have,

Pr
||ci||||cj||bij > (1 + δ)[ATA]ij

 ≤

eδ

(1 + δ)(1+δ)

α

and
Pr

||ci||||cj||bi ,j < (1− δ)[ATA]ij
 < exp(−αδ2/2)

Live Applications

I Large scale live at twitter.com

Experiments

0 2 4 6 8 10 12 14 16 18
0

0.2

0.4

0.6

0.8

1

log(p / ε)

DISCO Cosine shuffle size vs accuracy tradeoff

D
IS

C
O

 S
h

u
ff

le
 /

 N
a

iv
e

 S
h

u
ff

le

0 2 4 6 8 10 12 14 16 18
0

0.5

1

1.5

2

2.5

a
v
g

 r
e

la
ti
v
e

 e
rr

DISCO Shuffle / Naive Shuffle

avg relative err

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

similarity threshold

a
v
g

 r
e

la
ti
v
e

 e
rr

DISCO Cosine Similarity

http://reza-zadeh.com rezab@stanford.edu

twitter.com

