NOMAD: A Distributed Framework for Latent Variable Models

Inderjit S. Dhillon

Department of Computer Science
University of Texas at Austin

Joint work with H.-F. Yu, C.-J. Hsieh, H. Yun, and S.V.N. Vishwanathan

NIPS 2014 Workshop:
Distributed Machine Learning and Matrix Computations
Outline

- Challenges
- Matrix Completion
 - Stochastic Gradient Method
 - Existing Distributed Approaches
 - Our Solution: NOMAD-MF
- Latent Dirichlet Allocation (LDA)
 - Gibbs Sampling
 - Existing Distributed Solutions: AdLDA, Yahoo LDA
 - Our Solution: F+NOMAD-LDA
Latent Variable Models: very useful in many applications
- Latent models for recommender systems (e.g., MF)
- Topic models for document corpus (e.g., LDA)

Fast growth of data
- Almost 2.5×10^{18} bytes of data added each day
- 90% of the world’s data today was generated in the past two years
Challenges

- *Algorithmic as well as hardware level*
 - Many effective algorithms involve fine-grain iterative computation
 ⇒ hard to parallelize
 - Many current parallel approaches
 - bulk synchronization
 ⇒ *wasted* CPU power when communicating
 - complicated locking mechanism
 ⇒ hard to scale to many machines
 - asynchronous computation using parameter server
 ⇒ not serializable, danger of stale parameters

- Proposed **NOMAD Framework**
 - access graph analysis to exploit parallelism
 - asynchronous computation, non-blocking communication, and lock-free
 - serializable (or almost serializable)
 - successful applications: MF and LDA
Matrix Factorization: Recommender Systems
Recommender Systems

Inderjit Dhillon (UT Austin.)

Rating Matrix

<table>
<thead>
<tr>
<th></th>
<th>Movie 1</th>
<th>Movie 2</th>
<th>Items</th>
<th>Movie 10</th>
<th>Movie 11</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>5</td>
<td>2</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>?</td>
<td>5</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Matrix Factorization Approach $A \approx WH^T$
Matrix Factorization Approach $A \approx WH^T$
Matrix Factorization Approach

\[
\min_{W \in \mathcal{R}^{m \times k}, H \in \mathcal{R}^{n \times k}} \sum_{(i,j) \in \Omega} (A_{ij} - w_i^T h_j)^2 + \lambda (\|W\|_F^2 + \|H\|_F^2),
\]

- \(\Omega = \{(i,j) \mid A_{ij} \text{ is observed}\} \)
- Regularized terms to avoid over-fitting

A transform maps users/items to latent feature space \(\mathbb{R}^k \)

- the \(i^{th} \) user \(\Rightarrow \) \(i^{th} \) row of \(W \), \(w_i^T \)
- the \(j^{th} \) item \(\Rightarrow \) \(j^{th} \) column of \(H^T \), \(h_j \).
- \(w_i^T h_j \): measures the interaction.
SGM: Stochastic Gradient Method

SGM update: pick \((i, j) \in \Omega\)

- \(R_{ij} \leftarrow A_{ij} - w_i^T h_j\),
- \(w_i \leftarrow w_i - \eta \left(\frac{\lambda}{|\Omega_i|} w_i - R_{ij} h_j\right)\),
- \(h_j \leftarrow h_j - \eta \left(\frac{\lambda}{|\Omega_j|} h_j - R_{ij} w_i\right)\),

\(\Omega_i\): observed ratings of \(i\)-th row.

\(\bar{\Omega}_j\): observed ratings of \(j\)-th column.

An iteration: \(|\Omega|\) updates

- Time per update: \(O(k)\)
- Time per iteration: \(O(|\Omega|k)\),
 better than \(O(|\Omega|k^2)\) for ALS
Parallel Stochastic Gradient Descent for MF

Challenge: direct parallel updates ⇒ memory conflicts.

- Multi-core parallelization
 - Hogwild [Niu 2011]
 - Jellyfish [Recht et al, 2011]
 - FPSGD** [Zhuang et al, 2013]

- Multi-machine parallelization:
 - DSGD [Gemulla et al, 2011]
 - DSGD ++ [Teflioudi et al, 2013]
Synchronize and communicate

Synchronize and communicate
Motivation

Most existing parallel approaches require

- **Synchronization** and/or
 - E.g., ALS, DSGD/JellyFish, DSGD++, CCD++
 - Computing power is wasted:
 - Interleaved computation and communication
 - Curse of the last reducer

- **Locking** and/or
 - E.g., parallel SGD, FPSGD**
 - A standard way to avoid conflict and guarantee *serializability*
 - Complicated remote locking slows down the computation
 - Hard to implement efficient locking on a distributed system

- **Computation using stale values**
 - E.g., Hogwild, Asynchronous SGD using parameter server
 - Lack of serializability

Q: Can we avoid both *synchronization* and *locking* but keep CPU from being *idle* and guarantee *serializability*?
Our answer: NOMAD

A: Yes, NOMAD keeps CPU and network busy simultaneously

 - **Stochastic gradient** update rule

 - only a small set of variables involved

 - **Nomadic token passing**

 - widely used in telecommunication area

 - avoids conflict without explicit remote locking

 - Idea: “owner computes”

 - NOMAD: multiple “active tokens” and nomadic passing

Features:

- fully asynchronous computation
- lock-free implementation
- non-blocking communication
- serializable update sequence
Access Graph for Stochastic Gradient

- Access graph $G = (V, E)$:
 - $V = \{w_i\} \cup \{h_j\}$
 - $E = \{e_{ij} : (i, j) \in \Omega\}$

- Connection to SG:
 - each e_{ij} corresponds to a SG update
 - only access to w_i and h_j

- Parallelism:
 - edges without common node can be updated in parallel
 - identify “matching” in the graph

- Nomadic Token Passing:
 - mechanism s.t. active edges always form a “matching”
 - serializability guaranteed
Nomadic Tokens for \(\{h_j\} \):

- \(n \) tokens
- \((j, h_j) \): \(O(k) \) space

Worker:

- \(p \) workers
- a computing unit + a concurrent token queue
- a block of \(W \): \(O(mk/p) \)
- a block row of \(A \): \(O(|\Omega|/p) \)
Illustration of NOMAD communication
Comparison on a Multi-core System

- On a 32-core processor with enough RAM.
- Comparison: NOMAD, FPSGD**, and CCD++.

(100M ratings)

Netflix, machines=1, cores=30, $\lambda = 0.05$, $k = 100$

(250M ratings)

Yahoo!, machines=1, cores=30, $\lambda = 1.00$, $k = 100$
Comparison on a Distributed System

- On a distributed system with 32 machines.
- Comparison: NOMAD, DSGD, DSGD++, and CCD++.

\[
\begin{align*}
\text{(100M ratings)} & \\
\text{Netflix, machines=32, cores=4, } \lambda = 0.05, k = 100
\end{align*}
\]

\[
\begin{align*}
\text{(250M ratings)} & \\
\text{Yahoo!, machines=32, cores=4, } \lambda = 1.00, k = 100
\end{align*}
\]
Super Linear Scaling of NOMAD-MF

Yahoo!, cores=4, $\lambda = 1.00$, $k = 100$

![Graph showing test RMSE for Yahoo! with different numbers of machines and cores.](image-url)
Topic Modeling:
Latent Dirichlet Allocation
Latent Dirichlet Allocation (LDA)

Each **topic** is a multinomial distribution over words

Each **document** is a multinomial distribution over topics

Each **word** is drawn from one of these topics

Graphical Model for LDA

- **Joint distribution**

\[
Pr(\cdot) = \prod_{t=1}^{T} Pr(\phi_t | \beta) \prod_{i=1}^{l} Pr(\theta_i | \alpha) \left(\prod_{j=1}^{n_i} Pr(z_{i,j} | \theta_i) Pr(w_{i,j} | \phi_{z_{i,j}}) \right)
\]

- \(Pr(\phi_t | \beta), Pr(\theta_i | \alpha)\): Dirichlet distributions
- \(Pr(w | \phi_t), Pr(z | \theta_i)\): multinomial distributions
Inference for LDA

- Only documents are observed
- $\theta_t, \phi_t, z_{i,j}$ are latent
- Goal: infer these latent structures

Posterior Inference for LDA

Task: $Pr(\theta_i, \phi_t, z_{i,j} \mid \{d_i\}, \alpha, \beta)$

- Given
 - a corpus of documents $\{d_i: i = 1, \ldots, N\}$, α, β
 - each document $d_i = \{w_{i,j}: j = 1, \ldots, n_i\}$

- Exact inference for $z_{i,j}, \theta_i, \phi_t$
 - Intractable
 - Latent variables are dependent when conditioned on data

Approximate Inference approaches:

- Variational Methods
 - See [Blei et al, 2003]
 - an optimization approach
 - runs faster
 - but generates biased results

- Gibbs Samplings
 - See [Griffiths & Steyvers, 2004]
 - an MCMC approach
 - more accurate
 - but slower with a vanilla implementation

Goal: Design a scalable Gibbs sampler for LDA
Count matrices for topic assignment \(\{z_{i,j}\} \):
- \(n_{dt} \): \# words of document \(d \) assigned to topic \(t \)
- \(n_{wt} \): \# of times word \(w \) assigned to topic \(t \)
- \(n_t := \sum_w n_{wt} = \sum_d n_{dt} \)

Gibbs Sampling Step
1. choose \(w := w_{i,j} \) with old assignment \(t_o := z_{i,j} \) of document \(d := d_i \)
2. Decrease \(n_{dt_o}, n_{wt_o}, n_t \) by 1
3. Resample a new assignment \(t_n := z_{i,j} \) according to

\[
Pr(z_{i,j} = t) \propto \frac{(n_{dt} + \alpha)(n_{wt} + \beta)}{n_t + \bar{\beta}}, \quad \forall t = 1, \ldots, T.
\]

4. Increase \(n_{dt_n}, n_{wt_n}, n_{t_n} \) by 1

Constants
- \(J \): vocabulary size
- \(\bar{\beta} = \beta \times J \)
Access Pattern for Gibbs Sampling

\[n_t \text{ Topics} \]

\[n_{dt} \text{ Docs} \]

\[n_{wt} \text{ Words} \]

\[Z_{ij} \]
Multinomial Sampling Techniques for $p \in R_+^T$

<table>
<thead>
<tr>
<th></th>
<th>Initialization</th>
<th>Generation</th>
<th>Parameter Update</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Time</td>
<td>Space</td>
<td>Time</td>
</tr>
<tr>
<td>LSearch</td>
<td>$\Theta(T)$</td>
<td>$\Theta(1)$</td>
<td>$\Theta(T)$</td>
</tr>
<tr>
<td>BSearch</td>
<td>$\Theta(T)$</td>
<td>$\Theta(1)$</td>
<td>$\Theta(\log T)$</td>
</tr>
<tr>
<td>Alias Method</td>
<td>$\Theta(T)$</td>
<td>$\Theta(T)$</td>
<td>$\Theta(1)$</td>
</tr>
<tr>
<td>F$+$tree Sampling</td>
<td>$\Theta(T)$</td>
<td>$\Theta(1)$</td>
<td>$\Theta(\log T)$</td>
</tr>
</tbody>
</table>

LSearch
- maintain $c_T = p^T \mathbf{1}$
- linear search
- $\Theta(1)$ update

BSearch
- maintain $c = \text{cumsum}(p)$
- binary search
- no support for update

Alias Method
- Alias table
- construction has **some overhead**
- no support for updates

F$+$tree
- a variant of Fenwick tree
- construction has **low overhead**
- logarithmic time for sampling and update
F+Tree: Construction

- Construction in $\Theta(T)$ time
- $p = [0.3, 1.5, 0.4, 0.3]^\top$

![Diagram of F+Tree](image)
F+Tree: Sampling

- Multinomial sampling in $\Theta(\log T)$ time
- Initial u: a uniformly number drawn from $[0, F[1])$

```

 Initial $u$: a uniformly number drawn from $[0, F[1])$

```

```

 F+Tree: Sampling

Multinomial sampling in $\Theta(\log T)$ time
Initial $u$: a uniformly number drawn from $[0, F[1])$

```

```

 Inderjit Dhillon (UT Austin.)
Dec 12, 2014 29 / 40

```

```

```

```

```

```

```

```
F+Tree: Update

- Update in $\Theta(\log T)$ time
- $p_3 \leftarrow p_3 + \delta$

![Diagram of a balanced binary tree with values and updates marked with delta ($\delta$).]
F+LDA = LDA with F+tree Sampling

- Decomposition of \( p \)

\[
p_t = \frac{(n_{dt} + \alpha)(n_{wt} + \beta)}{n_t + \beta}, \quad \forall t = 1, \ldots, T.
\]

\[
= \beta \left( \frac{n_{dt} + \alpha}{n_t + \beta} \right) + n_{wt} \left( \frac{n_{dt} + \alpha}{n_t + \beta} \right). \tag{1}
\]

- \( p = \beta q + r \)
  - two-level sampling for \( p \)
  - \( q \) is dense
    - only 2 entries \((q_{t_o}, q_{t_n})\) change for each Gibbs step in the same document
    - use F+Tree for \( q \)
  - \( r \) is sparse
    - nonzero entries: \( T_w := \{ t : n_{tw} \neq 0 \} \)
    - entire \( r \) changes for each Gibbs step
    - use BSearch for \( r \)
  - Can also work on word-by-word update sequence
F+LDA: Alternative Decomposition

- **Word-by-word** Gibbs sampling sequence
- Decomposition of $p$

$$
pt = \frac{(ndt + \alpha)(nwt + \beta)}{nt + \beta}, \quad \forall t = 1, \ldots, T.
$$

$$
= \alpha \left( \frac{nwt + \beta}{nt + \beta} \right) + ndt \left( \frac{nwt + \beta}{nt + \beta} \right).
$$

- $p = \alpha q + r$
- $q$: slight changes for this sequence $\Rightarrow$ use F+Tree
- $r$: $|T_d := \{t : ndt \neq 0\}|$ nonzeros $\Rightarrow$ use BSearch
### Comparison to Other LDA Sampling

<table>
<thead>
<tr>
<th></th>
<th>F+LDA</th>
<th>F+LDA</th>
<th>Sparse-LDA</th>
<th>Alias-LDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exact?</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Decomposition</td>
<td>$\alpha \frac{n_{wt} + \beta}{n_t + \beta} + n_{dt} \frac{n_t + \beta}{n_{wt} + \beta}$</td>
<td>$\beta \frac{n_{dt} + \alpha}{n_t + \beta} + n_{wt} \frac{n_t + \beta}{n_{dt} + \alpha}$</td>
<td>$\frac{\alpha \beta}{n_t + \beta} + \beta \frac{n_{dt} + \alpha}{n_t + \beta} + n_{wt} \frac{n_t + \beta}{n_{dt} + \alpha}$</td>
<td>$\alpha \frac{n_{wt} + \beta}{n_t + \beta} + n_{dt} \frac{n_t + \beta}{n_{wt} + \beta}$</td>
</tr>
<tr>
<td>Structure</td>
<td>F+tree</td>
<td>BSearch</td>
<td>F+tree</td>
<td>BSearch</td>
</tr>
<tr>
<td>Fresh samples</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Initialization</td>
<td>$\Theta(\log T)$</td>
<td>$\Theta(</td>
<td>T_d</td>
<td>)$</td>
</tr>
<tr>
<td>Sampling</td>
<td>$\Theta(\log T)$</td>
<td>$\Theta(\log</td>
<td>T_d</td>
<td>)$</td>
</tr>
</tbody>
</table>

- **F+LDA**: word-by-word faster than doc-by-doc for large $I$
  - $|T_d|$ bounded by $n_i$, but $|T_w|$ approaches to $T$
  - per Gibbs step cost: $\rho_F \log T + \rho_B |T_d|$

- **SparseLDA**:
  - per Gibbs step cost: $\Theta(T + |T_d| + |T_w|)$
  - the first $\Theta(T)$ rarely happens but $|T_w| \rightarrow T$ for large $I$

- **AliasLDA**:
  - per Gibbs step cost: $\rho_A |T_d| + \#MH$
  - $\rho_A \approx 3 \times \rho_B$: construction overhead of Alias table
  - If $(\rho_A - \rho_B) |T_d| > \rho_F \log T \Rightarrow$ AliasLDA slower than F+LDA
  - say $|T_d| \approx 100$, F+LDA still faster for $T < 2^{50}$
Comparison of various sampling methods

- Single machine, single thread
- y-axis: speedup over normal $O(T)$ multinomial sampling
- Enron: 38K docs with 6M tokens
- NyTimes: 0.3M docs with 100M tokens
Access Pattern for Gibbs Sampling

\[ n_t \] Topics  \[ n_{wt} \] Words

\[ n_{dt} \] Docs

\[ z_{ij} \]
Access Graph for Gibbs Sampling

- $G = (V, E)$: a hyper graph
  
  \[
  V = \{d_i\} \cup \{w_j\} \cup \{s\} \\
  E = \{e_{ij} = (d_i, w_j, s)\}
  \]

- Connection to Gibbs sampling
  
  \[
  (d_i)_t := n_{d_i t}, (w_j)_t := n_{w_j t}, (s)_t := n_t \\
  \text{each } e_{ij}: \text{a Gibbs step for word } w_j \text{ in } d_i \\
  \text{access to } (d_i, w_j, s)
  \]

- Parallelism: more challenging
  
  - all edges incident to $s$
  - all $(s)_t$ are large in general
    
    $\Rightarrow$ slightly stale $s$ is fine for accuracy
  - duplicate $s$ for parallelism
Nomadic Tokens for $w_j$

Nomadic Tokens for
$\{w_j : j = 1, \ldots, J\}$:
- $J$ tokens
- $(j, w_j): O(T)$ space

Worker:
- $p$ workers
- a computing unit + a concurrent token queue
- a subset of $\{d_i\}: O(IT/p)$
- “x”: an occurrence of a word
- bigger rectangle: a subset of corpus
- smaller rectangle: a unit subtask
Nomadic Token for \( s \): Circular Delta Update

- Single global \( s \)
  - travels among machines as a messenger
  - broadcasts local delta updates
- Every machine \( p \): \((s_p, \bar{s})\)
  - \( s_p \): local working copy
  - \( \bar{s} \): snapshot version of global \( s \)

\[
\begin{align*}
\bar{s} & \leftarrow s \\
\bar{s} & \leftarrow s \\
\bar{s} & \leftarrow s \\
\end{align*}
\]

\[
\begin{align*}
s & \leftarrow s + (s_3 - \bar{s}) \\
\bar{s} & \leftarrow s \\
s_3 & \leftarrow s \\
\end{align*}
\]
Comparison on a single multi-core machine

- On a machine with a 20-core processor
- Comparison: F+NOMAD LDA, Yahoo! LDA
- PubMed: 9M docs with 700M tokens
- Amazon: 30M docs with 1.5B tokens
Comparison on a Multi-machine System

- 32 machines, each with a 20-core processor.
- Comparison: F+NOMAD LDA, Yahoo! LDA
- Amazon: 30M docs with 1.5B tokens
- UMBC: 40M docs with 1.5B tokens
Conclusions

- NOMAD framework uses nomadic tokens to provide
  - Asynchronous computation
  - Non-blocking communication
  - Lock-free implementation
  - Serializable or near Serializable

- Recommender System: Matrix factorization
  - scalable parallel stochastic gradient
  - Serializability guarantee

- Topic Modeling: Latent Dirichlet Allocation
  - Logarithmic F+tree sampling
  - Efficient Gibbs Sampling
  - Duplicated nomadic tokens for the common node
  - Outperforms Yahoo! LDA