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Abstract

We propose a novel class of algorithms for low rank matrix completion. Our ap-
proach builds on novel penalty functions on the singular values of the low rank
matrix. By exploiting a mixture model representation of this penalty, we show
that a suitably chosen set of latent variables enables to derive an Expectation-
Maximization algorithm to obtain a Maximum A Posteriori estimate of the com-
pleted low rank matrix. The resulting algorithm is an iterative soft-thresholded
algorithm which iteratively adapts the shrinkage coefficients associated to the sin-
gular values. The algorithm is simple to implement and can scale to large matrices.
We provide numerical comparisons between our approach and recent alternatives
showing the interest of the proposed approach for low rank matrix completion.

1 Introduction

Matrix completion has attracted a lot of attention over the past few years. The objective is to “com-
plete” a matrix of potentially large dimension based on a small (and potentially noisy) subset of its
entries [1, 2, 3]. One popular application is to build automatic recommender systems, where the
rows correspond to users, the columns to items and entries may be ratings or binary (like/dislike).
The objective is then to predict user preferences from a subset of the entries.

In many cases, it is reasonable to assume that the unknown m × n matrix Z can be approximated
by a matrix of low rank Z ' ABT where A and B are respectively of size m × k and n × k, with
k � min(m,n). In the recommender system application, the low rank assumption is sensible as it
is commonly believed that only a few factors contribute to user’s preferences. The low rank structure
thus implies some sort of collaboration between the different users/items [4].

We typically observe a noisy version Xij of some entries (i, j) ∈ Ω where Ω ⊂ {1, . . . ,m} ×
{1, . . . , n}. For (i, j) ∈ Ω

Xij = Zij + εij , εij
iid∼ N (0, σ2) (1)

where σ2 > 0 andN (µ, σ2) is the normal distribution of mean µ and variance σ2. Low rank matrix
completion can be adressed by solving the following optimization problem

minimize
Z

1

2σ2

∑
(i,j)∈Ω

(Xij − Zij)2
+ λ rank(Z) (2)

1



where λ > 0 is some regularization parameter. For general subsets Ω, the optimization problem (2)
is computationally hard and many authors have advocated the use of a convex relaxation of (2)
[5, 6, 4], yielding the following convex optimization problem

minimize
Z

1

2σ2

∑
(i,j)∈Ω

(Xij − Zij)2
+ λ ‖Z‖∗ (3)

where ‖Z‖∗ is the nuclear norm of Z, or the sum of the singular values of Z. [4] proposed an
iterative algorithm, called Soft-Impute, for solving the nuclear norm regularized minimization (3).

In this paper, we show that the solution to the objective function (3) can be interpreted as a Maxi-
mum A Posteriori (MAP) estimate when assuming that the singular values of Z are independently
and identically drawn (iid) from an exponential distribution with rate λ. Using this Bayesian in-
terpretation, we propose alternative concave penalties to the nuclear norm, obtained by consider-
ing that the singular values are iid from a mixture of exponential distributions. We show that this
class of penalties bridges the gap between the nuclear norm and the rank penalty, and that a simple
Expectation-Maximization (EM) algorithm can be derived to obtain MAP estimates. The resulting
algorithm iteratively adapts the shrinkage coefficients associated to the singular values. It can be
seen as the equivalent for matrices of reweighted `1 algorithms [6] for multivariate linear regression.
Interestingly, we show that the Soft-Impute algorithm of [4] is obtained as a particular case. We also
discuss the extension of our algorithms to binary matrices, building on the same seed of ideas, in the
supplementary material. Finally, we provide some empirical evidence of the interest of the proposed
approach on simulated and real data.

2 Complete matrix X

Consider first that we observe the complete matrix X of size m × n. Let r = min(m,n). We
consider the following convex optimization problem

minimize
Z

1

2σ2
‖X − Z‖2F + λ ‖Z‖∗ (4)

where ‖·‖F is the Frobenius norm. The solution to Eq. (4) in the complete case is a soft-thresholded
singular value decomposition (SVD) of X [7, 4], i.e.

Ẑ = Sλσ2(X)

where Sλ(X) = ŨD̃λṼ
T with D̃λ = diag((d̃1 − λ)+, . . . , (d̃r − λ)+) and t+ = max(t, 0).

X = ŨD̃Ṽ T is the singular value decomposition of X with D̃ = diag(d̃1, . . . , d̃r).

The solution Ẑ to the optimization problem (4) can be interpreted as the Maximum A Posteriori
estimate under the likelihood (1) and prior

p(Z) ∝ exp (−λ ‖Z‖∗)
Assuming Z = UDV T , with D = diag(d1, d2, . . . , dr) this can be further decomposed as

p(Z) = p(U)p(V )p(D)
where we assume a uniform Haar prior distribution on the unitary matricesU and V , and exponential
priors on the singular values di, hence

p(d1, . . . , dr) =

r∏
i=1

Exp (di;λ) (5)

where Exp(x;λ) = λ exp(−λx) is the probability density function (pdf) of the exponential distri-
bution of parameter λ evaluated at x. The exponential distribution has a mode at 0, hence favoring
sparse solutions.

We propose here alternative penalty/prior distributions, that bridge the gap between the rank and the
nuclear norm penalties. Our penalties are based on hierarchical Bayes constructions and the related
optimization problems to obtain MAP estimates can be solved by using an EM algorithm.

2.1 Hierarchical adaptive spectral penalty

We consider the following hierarchical prior for the low rank matrix Z. We still assume that Z =
UDV T , where the unitary matrices U and V are assigned uniform priors andD = diag(d1, . . . , dr).
We now assume that each singular value di has its own regularization parameter γi.
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Figure 1: Marginal distribution p(di) with
a = b = β for different values of the param-
eter β. The distribution becomes more con-
centrated around zero with heavier tails as β
decreases. The case β → ∞ corresponds to
an exponential distribution with unit rate.

Figure 2: Thresholding rules on the singular
values d̃i of X for the soft thresholding rule
(λ = 1), and hierarchical adaptive soft thresh-
olding algorithm with a = b = β.

p(d1, . . . , dr|γ1, . . . γr) =

r∏
i=1

p(di|γi) =

r∏
i=1

Exp(di; γi)

We further assume that the regularization parameters are themselves iid from a gamma distribution

p(γ1, . . . , γr) =

r∏
i=1

p(γi) =

r∏
i=1

Gamma(γi; a, b)

where Gamma(γi; a, b) is the pdf of the gamma distribution of parameters a > 0 and b > 0 evalu-
ated at γi. The marginal distribution over di is thus a continuous mixture of exponential distributions

p(di) =

∫ ∞
0

Exp(di; γi) Gamma(γi; a, b)dγi =
aba

(di + b)a+1
(6)

It is a Pareto distribution which has heavier tails than the exponential distribution. Figure 1 shows
the marginal distribution p(di) for a = b = β. The lower β, the heavier the tails of the distribution.
When β →∞, one recovers the exponential distribution of unit rate parameter. Let

pen(Z) = − log p(Z) = −
r∑
i=1

log(p(di)) = C1 +

r∑
i=1

(a+ 1) log(b+ di) (7)

be the penalty induced by the prior p(Z). We call the penalty (7) the Hierarchical Adaptive Spectral
Penalty (HASP). On Figure 3 (top) are represented the balls of constant penalties for a symmetric
2 × 2 matrix, for the HASP, nuclear norm and rank penalties. When the matrix is assumed to
be diagonal, one recovers respectively the lasso, hierarchical adaptive lasso (HAL) [6, 8] and `0
penalties, as shown on Figure 3 (bottom).

The penalty (7) admits as special cases the nuclear norm penalty λ||Z||∗ when a = λb and b→∞.
Another closely related penalty is the log-det heuristic [5, 9] penalty, defined for a square matrice Z
by log det(Z + δI) where δ is some small regularization constant. Both penalties agree on square
matrices when a = b = 0 and δ = 0.

2.2 EM algorithm for MAP estimation

Using the exponential mixture representation (6), we now show how to derive an EM algorithm [10]
to obtain a MAP estimate

Ẑ = arg max
Z

[log p(X|Z) + log p(Z)]

i.e. to minimize
L(Z) =

1

2σ2
‖X − Z‖2F +

r∑
i=1

(a+ 1) log(b+ di) (8)
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(a) Nuclear norm (b) HASP (β = 1) (c) HASP (β = 0.1) (d) Rank penalty

(e) `1 norm (f) HAL (β = 1) (g) HAL (β = 0.1) (h) `0 norm

Figure 3: Top: Manifold of constant penalty, for a symmetric 2 × 2 matrix Z = [x, y; y, z] for
(a) the nuclear norm, (b-c) hierarchical adaptive spectral penalty with a = b = β (b) β = 1 and
(c) β = 0.1, and (d) the rank penalty. Bottom: contour of constant penalty for a diagonal matrix
[x, 0; 0, z], where one recovers the classical (e) lasso, (f-g) hierarchical lasso and (h) `0 penalties.

We use the parameters γ = (γ1, . . . , γr) as latent variables in the EM algorithm. The E step is
obtained by

Q(Z,Z∗) = E [log(p(X,Z, γ))|Z∗, X] = C2 −
1

2σ2
‖X − Z‖2F −

r∑
i=1

E[γi|d∗i ]di

Hence at each iteration of the EM algorithm, the M step consists in solving the optimization problem

minimize
Z

1

2σ2
‖X − Z‖2F +

r∑
i=1

ωidi (9)

where ωi = E[γi|d∗i ] = ∂
∂d∗i

[− log p(d∗i )] = a+1
b+d∗i

.

(9) is an adaptive nuclear norm regularized optimization problem, with weights ωi. Without loss of
generality, assume that d∗1 ≥ d∗2 ≥ . . . ≥ d∗r . It implies that

0 ≤ ω1 ≤ ω2 ≤ . . . ≤ ωr (10)
The above weights will therefore penalize less heavily higher singular values, hence reducing bias.
As shown by [11, 12], a global optimal solution to Eq. (9) under the order constraint (10) is given
by a weighted soft-thresholded SVD

Ẑ = Sσ2ω(X) (11)

where Sω(X) = ŨD̃ωṼ
T with D̃ω = diag((d̃1−ω1)+, . . . , (d̃r−ωr)+). X = ŨD̃Ṽ T is the SVD

of X with D̃ = diag(d̃1, . . . , d̃r) and d̃1 ≥ d̃2 . . . ≥ d̃r.
Algorithm 1 summarizes the Hierarchical Adaptive Soft Thresholded (HAST) procedure to converge
to a local minimum of the objective (8). This algorithm admits the soft-thresholded SVD operator
as a special case when a = bλ and b = β → ∞. Figure 2 shows the thresholding rule applied to
the singular values of X for the HAST algorithm (a = b = β, with β = 2 and β = 0.1) and the
soft-thresholded SVD for λ = 1. The bias term, which is equal to λ for the nuclear norm, goes to
zero as d̃i goes to infinity.

Setting of the hyperparameters and initialization of the EM algorithm In the experiments, we
have set b = β and a = λβ where λ and β are tuning parameters that can be chosen by cross-
validation. As λ is the mean value of the regularization parameter γi, we initialize the algorithm
with the soft thresholded SVD with parameter σ2λ. It is possible to estimate the hyperparameter σ
within the EM algorithm as described in the supplementary material. In our experiments, we have
found the results not very sensitive to the setting of σ, and set it to 1.
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Algorithm 1 Hierarchical Adaptive Soft Thresholded (HAST) algorithm for low rank estimation of
complete matrices

Initialize Z(0). At iteration t ≥ 1

• For i = 1, . . . , r, compute the weights ω(t)
i = a+1

b+d
(t−1)
i

• Set Z(t) = Sσ2ω(t)(X)

• If L(Z(t−1))−L(Z(t))
L(Z(t−1))

< ε then return Ẑ = Z(t)

3 Matrix completion

We now show how the EM algorithm derived in the previous section can be adapted to the case
where only a subset of the entries is observed. It relies on imputing missing values, similarly to the
EM algorithm for SVD with missing data, see e.g. [10, 13].

Consider that only a subset Ω ⊂ {1, . . . ,m}×{1, . . . , n} of the entries of the matrixX is observed.
Similarly to [7], we introduce the operator PΩ(X) and its complementary P⊥Ω (X)

PΩ(X)(i, j) =

{
Xij if (i, j) ∈ Ω
0 otherwise and P⊥Ω (X)(i, j) =

{
0 if (i, j) ∈ Ω
Xij otherwise

Assuming the same prior (6), the MAP estimate is obtained by minimizing

L(Z) =
1

2σ2
‖PΩ(X)− PΩ(Z)‖2F + (a+ 1)

r∑
i=1

log(b+ di) (12)

We will now derive the EM algorithm, by using latent variables γ and P⊥Ω (X). The E step is given
by (details in supplementary material)

Q(Z,Z∗) = E
[
log(p(PΩ(X), P⊥Ω (X), Z, γ))|Z∗, PΩ(X)

]
= C4 −

1

2σ2

{∥∥PΩ(X) + P⊥Ω (Z∗)− Z
∥∥2

F

}
−

r∑
i=1

E[γi|d∗i ]di

Hence at each iteration of the algorithm, one needs to minimize
1

2σ2
‖X∗ − Z‖2F +

r∑
i=1

ωidi (13)

where ωi = E[γi|d∗i ] and X∗ = PΩ(X) + P⊥Ω (Z∗) is the observed matrix, completed with entries
in Z∗. We now have a complete matrix problem. As mentioned in the previous section, the mini-
mum of (13) is obtained with a weighted soft-thresholded SVD. Algorithm 2 provides the resulting
iterative procedure for matrix completion with the hierarchical adaptive spectral penalty.

Algorithm 2 Hierarchical Adaptive Soft Impute (HASI) algorithm for matrix completion

Initialize Z(0). At iteration t ≥ 1

• For i = 1, . . . , r, compute the weights ω(t)
i = a+1

b+d
(t−1)
i

• Set Z(t) = Sσ2ω(t)

(
PΩ(X) + P⊥Ω (Z(t−1))

)
• If L(Z(t−1))−L(Z(t))

L(Z(t−1))
< ε then return Ẑ = Z(t)

Related algorithms Algorithm 2 admits the Soft-Impute algorithm of [4] as a special case when
a = λb and b = β →∞. In this case, one obtains at each iteration ω(t)

i = λ for all i. On the contrary,
when β < ∞, our algorithm adaptively updates the weights so that to penalize less heavily higher
singular values. Some authors have proposed related one-step adaptive spectral penalty algorithms
[14, 11, 12]. However, in these procedures, the weights have to be chosen by some procedure
whereas in our case they are iteratively adapted.

Initialization The objective function (12) is in general not convex and different initializations may
lead to different modes. As in the complete case, we suggest to set a = λb and b = β and to initialize
the algorithm with the Soft-Impute algorithm with regularization parameter σ2λ.

5



Scaling Similarly to the Soft-Impute algorithm, the computationally demanding part of Algo-
rithm 2 is Sσ2ω(t)

(
PΩ(X) + P⊥Ω (Z(t−1))

)
which requires calculating a low rank truncated SVD.

For large matrices, one can resort to the PROPACK algorithm [15, 16] as described in [4]. This
sophisticated linear algebra algorithm can efficiently compute the truncated SVD of the “sparse +
low rank” matrix

PΩ(X) + P⊥Ω (Z(t−1)) = PΩ(X)− PΩ(Z(t−1))︸ ︷︷ ︸
sparse

+Z(t−1)︸ ︷︷ ︸
low rank

and can thus handle large matrices, as shown in [4].

4 Experiments

4.1 Simulated data

We first evaluate the performance of the proposed approach on simulated data. Our simulation
setting is similar to that of [4]. We generate Gaussian matrices A and B respectively of size m× q
and n × q, q ≤ r so that the matrix Z = ABT is of low rank q. A Gaussian noise of variance
σ2 is then added to the entries of Z to obtain the matrix X . The signal to noise ratio is defined as

SNR =
√

var(Z)
σ2 . We set m = n = 100 and σ = 1. We run all the algorithms with a precision

ε = 10−9 and a maximum number of tmax = 200 iterations (initialization included for HASI). We
compute err, the relative error between the estimated matrix Ẑ and the true matrix Z in the complete
case, and errΩ⊥ in the incomplete case, where

err =
||Ẑ − Z||2F
||Z||2F

and errΩ⊥ =
||P̂⊥Ω (Ẑ)− P⊥Ω (Z)||2F

||P⊥Ω (Z)||2F
For the HASP penalty, we set a = λβ and b = β. We compute the solutions over a grid of 50 values
of the regularization parameter λ linearly spaced from λ0 to 0, where λ0 = ||PΩ(X)||2 is the largest
singular value of the input matrix X , padded with zeros. This is done for three different values
β = 1, 10, 100. We use the same grid to obtain the regularization path for the other algorithms.

Complete case We first consider that the observed matrix is complete, with SNR = 1 and q = 10.
The HAST algorithm 1 is compared to the soft thresholded (ST) and hard thresholded (HT) SVD.
Results are reported in Figure 4(a). The HASP penalty provides a bridge/tradeoff between the
nuclear norm and the rank penalty. For example, value of β = 10 show a minimum at the true rank
q = 10 as HT, but with a lower error when the rank is overestimated.

0 10 20 30 40 50 60 70 80 90 100
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rank

R
e
la

ti
v
e
 e

rr
o
r

 

 

ST
HT
HAST β = 100
HAST β = 10
HAST β = 1

(a) SNR=1; Complete; rank=10

0 10 20 30 40 50 60
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rank

T
e

s
t 

e
rr

o
r

 

 

MMMF
SoftImp
SoftImp+
HardImp
HASI β = 100
HASI β = 10
HASI β = 1

(b) SNR=1; 50% missing; rank=5
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(c) SNR=10; 80% missing; rank=5

Figure 4: Test error w.r.t. the rank obtained by varying the value of the regularization parameter
λ. Results on simulated data are given for (a) complete matrix with SNR=1 (b) 50% missing and
SNR=1 and (c) 80% missing and SNR=10.

Incomplete case Then we consider the matrix completion problem, and remove uniformly a given
percentage of the entries in X . We compare the HASI algorithm to the Soft-Impute, Soft-Impute+
and Hard-Impute algorithms of [4] and to the MMMF algorithm of [17]. Results, averaged over
50 replications, are reported in Figures 4(b-c) for a true rank q = 5, (b) 50% of missing data and
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Figure 5: Boxplots of the test error and ranks obtained over 50 replications on simulated data.

Table 1: Results on the Jester and MovieLens datasets

Jester 1 Jester 2 Jester 3 MovieLens 100k MovieLens 1M
24983× 100 23500× 100 24938× 100 943× 1682 6040× 3952
27.5% miss. 27.3% miss. 75.3% miss. 93.7% miss. 95.8% miss.

Method NMAE Rank NMAE Rank NMAE Rank NMAE Rank NMAE Rank
MMMF 0.161 95 0.162 96 0.183 58 0.195 50 0.169 30
Soft Imp 0.161 100 0.162 100 0.184 78 0.197 156 0.176 30
Soft Imp+ 0.169 14 0.171 11 0.184 33 0.197 108 0.189 30
Hard Imp 0.158 7 0.159 6 0.181 4 0.190 7 0.175 8
HASI 0.153 100 0.153 100 0.174 30 0.187 35 0.172 27

SNR = 1 and (c) 80% of missing data and SNR = 10. Similar behavior is observed, with the HASI
algorithm attaining a minimum at the true rank q = 5. We then conduct the same experiments,
but remove 20% of the observed entries as a validation set to estimate the regularization parameters
(λ, β) for HASI, and λ for the other methods. We estimate Z on the whole observed matrix, and use
the unobserved entries as a test set. Results on the test error and estimated ranks over 50 replications
are reported in Figure 5. For 50% missing data, HASI is shown to outperform the other methods.
For 80% missing data, HASI and Hard Impute provide the best performances. In both cases, it is
able to recover very accurately the true rank of the matrix.

4.2 Collaborative filtering examples

We now compare the different methods on several benchmark datasets. We first consider the Jester
datasets [18]. The three datasets1 contain one hundred jokes, with user ratings between -10 and +10.
We randomly select two ratings per user as a test set, and two other ratings per user as a validation
set to select the parameters λ and β. The results are computed over four values β = 1000, 100, 10, 1.
We compare the results of the different methods with the Normalized Mean Absolute Error (NMAE)

NMAE =

1
card(Ωtest)

∑
(i,j)∈Ωtest

|Xij − Ẑij |
max(X)−min(X)

where Ωtest is the test set. The mean number of iterations for Soft-Impute, Hard-Impute and HASI
(initialization included) algorithms are respectively 9, 76 and 76. Computations for the HASI algo-
rithm take approximately 5 hours on a standard computer. The results, averaged over 10 replications
(with almost no variability observed), are presented in Table 1. The HASI algorithm provides very
good performance on the different Jester datasets, with lower NMAE than the other methods.

Figure 6 shows the NMAE in function of the rank. Low values of β exhibit a bimodal behavior
with two modes at low rank and full rank. High value β = 1000 is unimodal and outperforms
Soft-Impute at any particular rank.

1Jester datasets can be downloaded from the url http://goldberg.berkeley.edu/jester-data/
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Figure 6: NMAE on the test set of the (a) Jester 1 and (b) Jester 3 datasets w.r.t. the rank obtained
by varying the value of the regularization parameter λ. The curves obtained on the Jester 2 dataset
are hardly distinguishable from (a) and hence are not displayed due to space limitation.

Second, we conducted the same comparison on two MovieLens datasets2, which contain ratings of
movies by users. We randomly select 20% of the entries as a test set, and the remaining entries
are split between a training set (80%) and a validation set (20%). For all the methods, we stop
the regularization path as soon as the estimated rank exceeds rmax = 100. This is a practical
consideration: given that the computations for high ranks demand more time and memory, we are
interested in restricting ourselves to low rank solutions. Table 1 presents the results, averaged over 5
replications. For the MovieLens 100k dataset, HASI provides better NMAE than the other methods
with a low rank solution. For the larger MovieLens 1M dataset, the precision, maximum number
of iterations and maximum rank are decreased to ε = 10−6, tmax = 100 and rmax = 30. On
this dataset, MMMF provides the best NMAE at maximum rank. HASI provides the second best
performances with a slightly lower rank.

5 Conclusion

The proposed class of methods has shown to provide good results compared to several alternative
low rank matrix completion methods. It provides a bridge between nuclear norm and rank regular-
ization algorithms. Although the related optimization problem is not convex, experiments show that
initializing the algorithm with the Soft-Impute algorithm of [4] provides very satisfactory results.

In this paper, we have focused on a gamma mixture of exponentials, as it leads to a simple and
interpretable expression for the weights. It is however possible to generalize the results presented
here by using a three parameter generalized inverse Gaussian prior distribution (see e.g. [19]) for
the regularization parameters γi, thus offering an additional degree of freedom. Derivations of
the weights are provided in the supplementary material. Additionally, it is possible to derive an
EM algorithm for low rank matrix completion for binary matrices. Details are also provided in
supplementary material.

While we focus on point estimation in this paper, it would be of interest to investigate a fully
Bayesian approach and derive a Gibbs sampler or variational algorithm to approximate the posterior
distribution, and compare to other full Bayesian approaches to matrix completion [20, 21].
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