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Abstract

We consider simultaneously approximating all the columns of a data matrix in
terms of few selected columns of another matrix that is sometimes called “the dic-
tionary”. The challenge is to determine a small subset of the dictionary columns
that can be used to obtain an accurate prediction of the entire data matrix. Previ-
ously proposed greedy algorithms for this task compare each data column with all
dictionary columns, resulting in algorithms that may be too slow when both the
data matrix and the dictionary matrix are large. A previously proposed approach
for accelerating the run time requires large amounts of memory to keep temporary
values during the run of the algorithm. We propose two new algorithms that can
be used even when both the data matrix and the dictionary matrix are large. The
first algorithm is exact, with output identical to some previously proposed greedy
algorithms. It takes significantly less memory when compared to the current state-
of-the-art, and runs much faster when the dictionary matrix is sparse. The second
algorithm uses a low rank approximation to the data matrix to further improve the
run time. The algorithms are based on new recursive formulas for computing the
greedy selection criterion. The formulas enable decoupling most of the compu-
tations related to the data matrix from the computations related to the dictionary
matrix.

1 Introduction

Representing large amounts of data in terms of a small number of atoms taken from a given dictio-
nary is computationally challenging. Greedy algorithms that solve this problem are routinely applied
in areas such as signal processing and machine learning (e.g., [1, 2, 3, 4, 5]), where the amount of
data and the size of the dictionary are manageable. But applying previously proposed algorithms to
large databases may be impractical.

Consider data consisting of N items and a dictionary consisting of n atoms. Previously proposed
greedy algorithms (e.g., [6, 7]) compare each data item with all dictionary atoms, leading to run
time that is at least proportional to nN . In fact, taking into account the comparison time the run
time of a naive implementation is O(kmnN), where k is the selection size and m is the size of
a single data item. While there are many studies that analyze the accuracy of the greedy scheme
(e.g., [6, 7, 8, 9, 10, 11]) there is a relatively small amount of published work aimed at reducing the
run time of the greedy algorithms. We are aware of the studies in [7,12]. The study in [12] addresses
the number of passes over the data, but it is applied only to the case where the data matrix has a
single column. As discussed in Section 2, the algorithm established in [7] by Civril and Magdon-
Ismail, that we call “The CM Algorithm”, reduces the run time to O(mnN) by keeping in memory
nN intermediate values. Additional savings can be obtained by taking advantage of the dictionary
sparsity. The CM can take advantage of sparse dictionaries when the average number of non-zeros
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in each atom is reduced from m to no less than k. As explained in Section 2.7 sparser dictionaries
do not yield an improved asymptotic run time for the CM.

We propose two new greedy algorithms. They require significantly less memory than previously
proposed algorithms, retaining in memory only two values for each column of the dictionary. This
compares favorably with previous algorithms that typically require partial orthogonalization of the
dictionary matrix. When the dictionary matrix is sparse, the partial orthogonalization is non-sparse,
so that m values may have to be retained for each column of the dictionary. Furthermore, unlike
the CM our algorithms can take advantage of higher levels of dictionary sparsity to reduce their
asymptotic complexity. Their asymptotic run time is reduced with higher levels of sparsity as long
as the number of non-zeros is above km. This should be compared with the CM that cannot benefit
from sparsity levels where the number of non-zeros falls below kn, and with the naive method that
cannot take advantage of sparse dictionaries.

The first proposed algorithm is exact, producing the same output as other greedy algorithms. The
second algorithm uses a low rank approximation of the data matrix to further improve the run time.
The result is no longer identical to exact greedy algorithms, but it is very similar and allows for
much faster run time.

The proposed algorithms make use of the (surprising) observation that the computations related to
the data matrix can “almost” be decoupled from the computations related to the dictionary matrix.
Specifically, we derive recursive formulas that show how to determine the selection of the j+1th atom
using mostly computations that were already performed when the jth atom was selected. Since what
remains to be calculated is independent of N , the computations involving N are decoupled from the
computations involving n. Using these recursive formulas, which to the best of our knowledge are
new, the only computations that involve both n and N are those performed while selecting the first
atom.

The first algorithm that we propose, the SOLS-exact, computes the values necessary to select the
first atom, and then applies the recursive formulas to select the additional atoms. When applied to
dense dictionaries it has the same asymptotic complexity as the CM, but it uses significantly less
memory. As discussed earlier it performs better than the CM with sparse dictionaries. For example,
if the average number of nonzero entries in each dictionary column is a constant independent of the
column size, the run time of the SOLS-exact (under the assumption that km is not too big) would
be O(nN). This is significantly better than the O(knN) of the CM and the O(kmnN) of the naive
approach under the same assumptions.

The second algorithm that we propose, the SOLS-lowrank, improves over the first algorithm by re-
placing the data matrix with a low rank approximation. Recent studies (e.g., [13, 14, 15, 16]) have
shown that low rank approximations can be computed very rapidly with randomized algorithms, so
that the run time of the proposed algorithm is typically not affected by the complexity of computing
the low rank approximation. When the data matrix is approximated by a rank dmatrix, the complex-
ity of running the second algorithm is O(dmn) for dense dictionaries, and O(dn) for very sparse
dictionaries (assuming again that km is not too big compared to n).

1.1 Problem statement and related work

Let Y be a data matrix of m rows and N columns. Its columns are y1, . . . , yN , where a column yi
is an m dimensional vector. Similarly, let X be a “dictionary” matrix of m rows and n columns. Its
columns, also called “atoms”, are x1, . . . , xn, where a column xi is an m dimensional vector. We
consider the problem of selecting a subset of k columns from X that can be used to approximate all
the columns of Y . Specifically, suppose the columns xs1 , . . . , xsk are selected from X , then each
column yi of Y can be approximated by the linear combination:

yi ≈ ai,1xs1 + . . .+ ai,kxsk
where ai,1 . . . ai,k are coefficients associated with yi and chosen to minimize the approximation
error. In matrix form this can be written as:

Y ≈ SA (1)
where S = (xs1 , . . . , xsk) is the m × k selection matrix, and the coefficients matrix A is k × N .
The quality of the selection S is determined by the following error:

E = min
A
‖Y − SA‖2F (2)
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Figure 1: The relevant complexity parameters. The data matrix Y is m ×N , the dictionary matrix
X is m × n, and the selection matrix S is m × k. The matrix X has zx nonzero elements. The
matrix Y may by approximated by a d-rank matrix.

Input: X,Y, k. Output: S.
0. Global pre-calculations (done once).
1. Run iteration j = 1, . . . , k:

1.0 Pre-calculations for Iteration-j.
1.1 for i = 1, . . . , n : evaluate f(xi).
1.2 xsj = arg max f(xi). Add xsj to S.
1.3 Post-calculations for Iteration-j.

Figure 2: Algorithm GREEDY. The greedy framework of algorithms discussed in the paper.

where the matrix norm is the Frobenius norm. We are interested in the case where n (the dictionary
size) is big and k (the selection size) is small, as illustrated in Fig.1. This approximation and closely
related variants have attracted a lot of attention. Optimal solutions, as well as approximations within
a constant are known to be NP-hard even for the N=1 case [17, 18]. There are two common ap-
proaches for computing an approximate solution. The first approach recasts the approximation as
an l1 convex optimization (e.g. [19, 20]). The second approach is greedy, selecting the k columns
from X one after the other (e.g. [6, 7, 8, 10, 11, 17, 21, 22]). The l1 algorithms typically use linear
programming, and there is ample evidence (e.g. [12]) that they are much slower than the greedy
approach. In this paper we consider only the greedy approach.

Referring to the matrix X as a dictionary is common in the signal processing literature (e.g. [1]),
where in the heavily analyzed case ofN=1 the matrix Y is called “the signal”. The caseN=1 is also
common in machine learning and related studies, where it is known as feature selection in linear
regression (e.g. [2, 3, 5]).

Another heavily researched special case has X=Y , taking the dictionary to be the same as the data
matrix. Here the challenge is to approximate the data matrix Y by a small subset of its own columns.
This is sometimes called “unsupervised feature selection” in machine learning (e.g. [2]) and “column
subset selection” in computational linear algebra (e.g. [23]). Computing the optimal solution for this
special case is believed to be NP-hard [24], although there are efficient algorithms with a guaranteed
good approximation. See, e.g. [25, 26].

1.2 Paper organization

The paper is organized as follows. Section 2 reviews previously proposed greedy algorithms for the
sparse matrix approximation. Their run time and memory requirements are summarized in a table
shown in Fig. 3. Our main result is based on recursive formulas, derived in Section 3, for solving
the SOLS variant. The improved algorithms are presented in sections 4 and 5. Experimental results
are discussed in Section 6.

2 Greedy Algorithms

In this section we describe the main variants of previously proposed greedy algorithms for comput-
ing a sparse approximation in terms of dictionary atoms. Algorithm GREEDY in Fig. 2 is the basic
greedy approach for selecting a subset of k columns from the matrix X to estimate the matrix Y . It
includes as special cases all the algorithms discussed in this paper. For clarity, our presentation of
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Algorithm Reference N Memory Run Time Sparse X
Run Time

MP [21] 1 O(m) O(kmn) O(kzx)
OMP [1] 1 O(km) O(kmn) O(kzx)
OLS [17] 1 O(mn) O(kmn) O(kmn)
SOMP [8] N O(mN)) O(kmnN) O(kzxN)
SOLS [27] N O(mn) O(kmnN) O(kmnN)
CM [7] N O(mn) + nN O(mnN) O(N(kn+ zx))
ISOLS-exact this paper N O(km) + 2n O(mnN) O(N(km+ zx))
ISOLS-lowrank this paper N O((k + d)m) + 2n O(dmn+ TLR(Y )) O(d(km+ zx) + TLR(Y ))

Figure 3: Comparison of various algorithms. The SOLS, CM, and ISOLS-exact produce identical
output. TLR(Y ) is the cost of computing a low rank approximation for Y .

Algorithm GREEDY ignores some steps that do not have a significant impact on the run time, such
as restricting the selection in 1.2 only to previously unselected vectors.

The algorithm run time is typically dominated by Step 1.1, which computes f(x) (the selection
criterion) kn times. In estimating the required amount of memory we assume that the storage of
the input matrices X and Y is “free”, but that this storage cannot be reused. This assumption is
justified in situations where the matrices are sparse, or when they are stored in a secondary memory
that cannot be (cheaply) overwritten.

2.1 Orthogonal projections

The following definitions and notation are useful in describing the various algorithms. We write
Orthogonal(x,G) for the error (vector) of estimating the vector x in the column space of the matrix
G. It is defined as follows:

Orthogonal(x,G) = x−Ga
where a minimizes |x−Ga|2

The vector Ga is the best l2 approximation of the vector x in the column space of G. A common
technique for computing orthogonal projections (see [23]) is to compute a matrix Q with columns
that form an orthonormal basis to the column space of G. This can be done, for example, by the QR
factorization of G. Given such Q we have:

Orthogonal(x,G) = Orthogonal(x,Q) = x−QQTx

= x−
∑
qjq

T
j x

where the summation is over all the columns of Q. In particular we have the following recursion:

Orthogonal(x,Qj) = Orthogonal(x,Qj−1)− qjqTj x

where Qj = (Qj−1, qj). We write Orthonormal(x,G) for the direction of Orthogonal(x,G). It is
defined as follows:

Orthonormal(x,G) =
r

|r|
, r = Orthogonal(x,G)

2.2 The MP algorithm

The Matching Pursuit algorithm (MP) was proposed in [21]. It is applied with N=1, where the data
matrix Y consists of a single vector y. The changes in Algorithm GREEDY are:

0. Normalize X: xi ← xi/|xi|. Set r0 = y.
1.1 for i = 1, . . . , n : f(xi) = |rTj−1xi|.
1.3 a = xTsjrj−1, rj = rj−1 − axsj .
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Observe that the value of f(xi) is inversely related to the angle between xi and the residual rj−1.
Thus, the selection of xsj in Step 1.2 is the dictionary column “most similar” to (having the smallest
angle with) the residual vector rj−1. Step 1.3 updates the residual by removing the projection on the
selected vector xsj from the current residual vector.

Using all coordinates of xi for computing the dot product in 1.1 gives O(kmn) run time. When
X is sparsely represented by zx nonzero values the dot products can be computed more efficiently
and the run time reduces to O(kzx). Since only the vectors y, rj , xj need to be kept in memory the
amount of memory needed by the MP algorithm is O(m).

2.3 The OMP algorithm

The Orthogonal Matching pursuit (OMP) is only slightly more expensive than the MP but it is
expected to select a better set of dictionary columns. For theoretical analysis see, e.g., [6, 10, 11].
For applications in signal processing see, e.g., [1].

The OMP is applied with N=1, so that the data matrix Y consists of a single vector y. It uses the
same selection criterion as the MP, but calculates the residual vector as the orthogonal projection
error. As discussed in Section 2.1 this can be done efficiently by maintaining an orthogonal matrix
Q whose columns form an orthonormal basis to the selected vectors. With this implementation the
changes to Algorithm GREEDY are:

0. Normalize X: xi ← xi/|xi|. Set r0 = y.
1.1 for i = 1, . . . , n : f(xi) = |rTj−1xi|.
1.3 qj = Orthonormal(xsj , Qj−1)

Qj = (Qj−1, qj)
a = qTj rj−1, rj = rj−1 − aqj

The calculations in Step 1.1 dominate the run time of the algorithm so that it is essentially the same
as the run time of the MP, namely O(kmn). The OMP requires more memory to keep and maintain
the m× k matrix Q, leading to O(km) memory requirement.

2.4 The OLS algorithm

The Orthogonal Least Squares (OLS) algorithm is only slightly more expensive than the OMP but it
is expected to select a better set of dictionary columns. As the MP and the OMP it is implemented for
N=1 so that the data matrix Y consists of a single vector y. We use the name OLS following [10,28].
The algorithm has sometimes been called OMP (e.g. [29]), OOMP (e.g. [22]), and Forward Selection
(e.g. [3]) among others. See [28] for additional details about the naming of the algorithm. For a
theoretical analysis of the OLS see, e.g. [10,17]. For applications to feature selection see, e.g. [2,3].
For applications related to signal processing see, e.g. [4]. For applications related to computer vision
see, e.g. [30]. For applications related to numerical linear algebra see, e.g. [17].

The main idea behind the OLS is to select at each iteration the vector that reduces the prediction
error the most. Let e be the squared error of predicting y from the selection S, and let Q be an
orthonormal basis for the column space of S. We have:

e = min
a
|y − Sa|2 = |Orthogonal(y, S)|2

= |y −QQT y|2 = |y|2 − |QT y|2

This shows that minimizing e can be achieved by finding Q that maximizes |QT y|. The greedy
search can be simplified by noticing the following recursion. Let Qj denote the submatrix with the
first j columns of Q. Then:

|QT
j y|2 = |QT

j−1y|2 + |qTj y|2

where qj is the last column of Qj . This shows that the best greedy selection of xsj is the vector xsj
satisfying the following criterion:

xsj = arg max
xi

|qTi y|, qi = Orthonormal(xi, Qj−1) (3)
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When qi is orthogonal to Qj−1 we have: qTi y = qTi rj−1, where rj−1 = Orthogonal(y,Qj−1).
Therefore the local optimality criterion (3) can also be expressed as:

xsj = arg max
xi

|qTi rj−1|

qi = Orthonormal(xi, Qj−1)

rj−1 = Orthogonal(y,Qj−1)

(4)

Using either (3) or (4) requires partial orthogonalization of the entire matrix X . It is common to use
the recursion specified in Section 2.1 and replace the vector xi with its partial orthogonalization. A
typical implementation of the OLS using the local optimality criterion (4) (e.g. [17]) can be achieved
with the following changes to Algorithm GREEDY:

0. Set r0 = y.
1.1 for i = 1, . . . , n :

xi ← xi − qjqTj xi, f(xi) = |rTj−1xi|/|xi|.
1.3 qj = Orthonormal(xsj , Qj−1)

Qj = (Qj−1, qj)
a = qTj rj−1, rj = rj−1 − aqj

The algorithm run time is dominated by Step 1.1, that takes about twice the time of the corresponding
Step 1.1 of the OMP. What makes the OLS significantly more costly is the fact that the vectors xi in
Step 1.1 are not the original dictionary columns, since they have been partially orthogonalized with
respect to the previously selected vectors. The partial orthogonalization results in loss of sparsity,
and the need for additional memory to store the partially orthogonalized dictionary. This requires
additional mn memory, with no run time savings for sparse dictionaries.

2.5 The SOMP algorithm

The Simultaneous Orthogonal Matching Pursuit algorithm (SOMP) is a direct generalization of the
OMP for handling a data matrix of N columns [8]. The changes to Algorithm GREEDY are:

0. Normalize X: xi ← xi/|xi|. Set R0 = Y .
1.1 Let rj,1, . . . , rj,N be Rj columns.

for i = 1, . . . , n : f(xi) =
∑N

t=1 |rTj−1,txi|.
1.3 qj = Orthonormal(xsj , Qj−1)

Qj = (Qj−1, qj)
for t = 1, . . . , N :
Rj = Rj−1 − qjqTj Rj−1

As in the previous cases the calculations in Step 1.1 dominate the run time. They require knN dot
products of m-vectors that take O(kmnN). This can be reduced to O(kzxN) when the dictionary
is sparse. The amount of memory used by the algorithm to keep the matrices Q and R is km+mN .

2.6 The SOLS algorithm

The Simultaneous Orthogonal Least Squares algorithm (SOLS) is a direct generalization of the OLS
for handling a data matrix of N columns. The algorithm is analyzed in [7, 9, 27].

As in the case of the OLS the column selected from the dictionary is the one that reduces the
prediction error the most. The following discussion mirrors the discussion in 2.4. Let ei be the
squared error of predicting yi from the selection S, and letQ be an orthonormal basis for the column
space of S. The global error E is defined by: E =

∑N
i=1 ei. From the derivation in Section 2.4 we

have:
ei = |yi|2 − |QT yi|2

so that E =
∑

i |yi|2 −
∑

i |QT yi|2. Therefore the minimum of E can be achieved by maximizing∑N
i=1 |QT yi|2. let Qj be the submatrix of the first j columns in Q, and let qj be the last column of
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Qj , so that Qj = (Qj−1, qj). We have:

N∑
i=1

|QT
j yi|2 =

j∑
t=1

qTt (
∑
i

yiy
T
i )qt

=

j∑
t=1

qTt Y Y
T qt =

j∑
t=1

|Y T qj |2

= ‖Y TQj‖2F = ‖Y TQj−1‖2F + |Y T qj |2

where the matrix norms are the Frobenius norms. This shows that the best greedy selection of xsj
is the vector xsj satisfying the following local optimality criterion:

xsj = arg max
xi

|Y T qi|, qi = Orthonormal(xi, Qj−1) (5)

Since qi is orthogonal to Qj−1 we have: Y T qi = RT
j−1qi where Rj−1 = Y −Qj−1Q

T
j−1Y . Therefore

the local optimality criterion (5) can also be expressed as:

xsj = arg max
xi

|RT
j−1qi|

qi = Orthonormal(xi, Qj−1)

Rj−1 = Y −Qj−1Q
T
j−1Y

(6)

The implementation of the SOLS using the local optimality criterion (6) can be achieved with the
following changes to Algorithm GREEDY:

0. Set R0 = Y .
1.1 for i = 1, . . . , n :

xi ← xi − qjqTj xi, f(xi) = |RT
j−1xi|/|xi|.

1.3 qj = Orthonormal(xsj , Qj−1)
Qj = (Qj−1, qj)
Rj = Rj−1 − qjqTj Rj−1

As in previous cases the calculations in Step 1.1 dominate the run time. This step is visited kn times,
and the matrix-vector product costs O(mN). Therefore the run time is O(kmnN). It cannot be
reduced when the dictionary X is sparse since the partial orthogonalization of X typically destroys
its sparsity.

2.7 The CM algorithm

Civril and Magdon-Ismail describe in [7] a fast implementation of the SOLS algorithm that we call
The CM Algorithm. Their motivation was column subset selection, which they achieved as follows.
Suppose the goal is to select k columns from a matrix A. Set A to be the dictionary matrix X ,
and construct the data matrix Y consisting of the k dominant singular vectors of A, scaled by the
corresponding singular values. It is shown in [7] that with this setting running the SOLS gives a
good solution to column subset selection, as discussed in Section 1.1. To obtain a fast algorithm the
paper establishes the CM, an optimized SOLS algorithm.

The proposed optimization retains in memory the values of the dot products computed in Step 1.1
of the SOLS, so that they need only be updated after each iteration. There are nN dot products to be
maintained, and computing their initial values has an associated cost of O(mnN). The paper shows
that these updates can be done fast, with an associated cost ofO(nN) per iteration. Thus, the updates
cost a total of O(knN). Adding the initialization cost and the updates cost gives an algorithm with
run time of O((k +m)nN). The sparsity of X can be used during the initialization, but not during
the updates where X is partially orthogonalized. This reduces the run time to O(knN + zxN) for a
sparse X .

Examining Fig. 3 we see that the CM improves the run time by a factor of k over the naive SOLS.
The improvement for a sparse X is even more impressive. When zx ≤ kn the run time of the CM is
O(knN), better than the naive SOLS by a factor of m.
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2.8 Our results

As mentioned in Section 1 the algorithms we describe are based on formulas that allow recursive
efficient calculations of the selection criterion. The algorithms differ by how they evaluate the initial
values that are needed to select the first dictionary column. The exact version of the algorithm that
we call “ISOLS-exact” produces the same output as the SOLS and the CM. It runs in timeO(mnN)
on dense dictionaries, and in O(kmN + zxN) on sparse dictionaries. The algorithm keeps two
values for each column of the dictionary in addition to the matrix Q, that is of size m× k.

The second version of the algorithm that we call “ISOLS-lowrank” approximates the data matrix
and produces results that may not be identical to the “ISOLS-exact”. But it has a much faster run
time.

Comparing these algorithms to the CM we observe the following.

• The memory requirements of the CM are heavier than the memory requirements of our
algorithms.
• Assuming the same low rank approximation for the data matrix by the CM, that can reduce

the term N to d, we consider the case where zx ≈ n. The complexity of the CM is roughly
O(dkn), which is worse than the O(dn) of the ISOLS-lowrank by a factor of k.

3 Recursive SOLS criterion

Our main result is described in this section. We analyze the selection criterion in Line 1.1 of the
SOLS algorithm and show that it can be calculated recursively.

The matrix Qj−1 = (q1, . . . qj−1) is known at Line 1.1 of the SOLS. The vector qji is computed for
a candidate vector xi at Iteration-j by:

rij = xi −Qj−1Q
T
j−1xi, qij =

rij
|rij |

(7)

Applying the criterion in (5) the selection is computed by:

xsj = arg max
xi

|Y T qij |2

= arg max
xi

|Y T rij |2

|rij |2
= arg max

xi

uij
vij

(8)

where uij = |Y T rij |2, vij = |rij |2. We proceed to show that both uij and vij can be computed
recursively. The recursion for vij is well known, but to the best of our knowledge the recursion for
uij is new. We state the result as a theorem.

Theorem. Let Y be m × N , let Qj be m × j with orthonormal columns, and let qj be the last
column of Qj , so that Qj = (Qj−1, qj). For any vector x define:

rj = x−Qj−1Q
T
j−1x

uj = |Y rj |2, vj = |rj |2, fj =
uj
vj

If uj and vj are known then fj+1 can be computed by steps 1-5 described below, where Step 1 is
independent of x, and steps 2-5 are independent of N .

1. cj = Y Y T qj , dj = cj −Qj−1Q
T
j−1cj , βj = qTj cj

2. αj = qTj x, γj = dTj x

3. uj+1 = uj + α2
jβj − 2αjγj

4. vj+1 = vj − α2
j

5. fj+1 =
uj+1

vj+1
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Proof. The value of rj as defined in (7) satisfies:

rj+1 = x−QjQ
T
j x = rj − qjqTj x

This gives the following fundamental recursion:

rj+1 = rj − αjqj (9)

Observe that qj and rj+1 are orthogonal. Writing (9) as rj+1 +αjqj = rj and taking squared norms
of both sides gives: |rj+1|2 +α2

j = |rj |2. This proves the recursion on line 4. above. This recursion
is well known. It was previously used, for example, in [7, 31].

We proceed to derive the recursion for uj , given by the formula in line 3., that to the best of our
knowledge is new. From the fundamental recursion (9):

Y T rj+1 = Y T rj − αjY
T qj

Taking norms:

uj+1 = |Y T rj+1|2 = |Y T rj − αjY
T qj |2

= uj + α2
jβj − 2αjc

T
j rj

It remains to show that cTj rj = dTj x, and this follows by direct observation. �

3.1 Complexity

Step 1. The computation of cj as specified in Step 1 in the theorem can be done in one pass as
follows:

cj =

N∑
i=1

yi(y
T
i qj)

The cost is roughly 4mN flops. Similarly, the cost of calculating dj is roughly 5(j−1)m, and
the cost of calculating βj is 2m. We observe that summing it up for j = 1, . . . , k gives roughly
4km(N + 1) flops.

Step 2. The cost of the two dot products is roughly 4m flops.

Steps 3,4,5. These steps take roughly 8 flops.

4 The ISOLS-exact algorithm

In this section we describe the ISOLS-exact, a straightforward implementation of the theorem for-
mulas. In order to apply the recursion in the theorem we need the values of u0, v0 for all columns
of X . The ISOLS-exact computes these values, then selects the first column, and then applies the
recursion to select the rest of the columns. The detailed algorithm is shown in Fig.4 The values
needed for selecting the first column of X are calculated in Step 0.1, and the initial best selection is
identified in Step 0.2. The remaining k-1 selections are determined by the k-1 iterations of Step 1.

4.1 Complexity

There are three distinct components that affect the run time: the global initialization in Step 0.1, the
initial calculation in each iteration, performed in Step 1.0, and the two dot products in Step 1.1.

Dense dictionary. The expensive computation in Step 0.1 is the calculation of ui0 that takes roughly
2mnN flops. The cost of Step 1.0 is dominated by the evaluation of cj . Taking into account the
evaluation of both cj and dj gives roughly 4(k−1)m(N + 1) flops for the run time of Step 0.1. The
cost of Step 1.1 is dominated by the calculation of αi

j , γ
i
j which is roughly 4mn flops. This gives an

asymptotic run time of O(mnN), dominated by the global initialization.

Sparse dictionary. The number of flops needed to perform a dot product between a non-sparse and
a sparse vector is the number of nonzero entries in the sparse vector. Therefore, when X is sparse
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Input: X,Y, k. Output: S containing k atoms.

0. Initial steps
0.1 for i = 1, . . . , n:

ui0 = |Y Txi|2, vi0 = |xi|2, f i0 = ui0/v
i
0

0.2 i∗ = arg max
i
f i0, xs1 = xi∗ .

0.3 S = {xs1}, q1 = xs1/|xs1 |, Q0 = ( ), Q1 = (q1).

1. Run iterations for j = 1, . . . , k − 1:
1.0 cj = Y Y T qj , dj = cj −Qj−1Q

T
j−1cj , βj = qTj cj .

1.1 for i = 1, . . . , n :
αi
j = qTj xi, γ

i
j = dTj xi.

uij+1 = uij + (αi
j)

2βi
j − 2αi

jγ
i
j , vij+1 = vij − (αi

j)
2

f ij+1 = uij+1/v
i
j+1

1.2 i∗ = arg max
i
f ij+1, xsj+1

= xi∗ .

1.3 Add xsj+1
to S

qj+1 = Orthonormal(xsj+1
, Qj)

Qj+1 = (Qj , qj+1)

Figure 4: The ISOLS-exact algorithm

the complexity of Step 0.1 is reduced to O(zxN), where zx is the number of non-zeros in the matrix
X . Similarly, the complexity of Step 1.1 is reduced to 4zx. But there is no change in the complexity
of Step 1.0 since it is independent of X . This shows that the run time of Step 1.1 cannot be ignored
since km may be larger than zx. The asymptotic run time including both Step 0.1 and Step 1.0 is
O(zxN + kmN).

Memory. The algorithm requires a temporary storage of km for the matrix Q, and a temporary
storage of 2n for keeping the values ui, vi for each column of the dictionary X .

5 The ISOLS-lowrank algorithm

The analysis in Section 4 shows that the asymptotic run time of the ISOLS-exact is proportional to
N , the number of columns of the data matrix Y . Observe that Y appears only in steps 0.1 and 1.0
of the ISOLS-exact, and that in both cases the computation depends only on Y Y T . This suggests
an approximate algorithm where Y is replaced by the matrix H that has fewer columns, but can still
approximate Y in the sense that HHTx ≈ Y Y Tx for an arbitrary vector x. More specifically we
need HHT to approximate Y Y T in the spectral norm. The resulting algorithm is described below
as a modification of the ISOLS-exact. The changes needed in Algorithm ISOLS-exact are specified
blow.

Input: X,Y, k, d. Output: S.

0.0 Compute an m× d matrix H such that
HHT ≈ Y Y T .

0.1 Compute ui0 by: ui0 = |HTxi|2
1.0 Compute cj by: cj = HHT qj .

Modifications to the ISOLS-exact algorithm that give the ISOLS-lowrank algorithm

10



5.1 Complexity

There are four distinct parts that affect the run time of the ISOLS-lowrank algorithm: Step 0.0, where
the low rank approximation is computed, and steps 0.1,1.0,1.1, that were discussed in Section 4.1.
We write TLR(Y ) for the run time of computing the low rank approximation of Y . It is discussed in
detail in Section 5.2.

Dense dictionary. It is clear from the analysis in Section 4.1 that Step 0.1 dominates steps 1.0
and 1.1 with asymptotic complexity of O(dmn). This gives asymptotic complexity of O(dmn +
TLR(Y )) for running the ISOLS-lowrank with a dense dictionary.

Sparse dictionary. Using same arguments as in Section 4.1 the asymptotic run time with sparse
dictionaries is O(d(km+ zx) + TLR(Y )).

Memory. The algorithm requires storage of km for the matrix Q, and 2n for keeping the values
ui, vi for each column of the dictionary X .

5.2 Low rank approximations to the data matrix

The ISOLS-lowrank replaces the m × N data matrix Y with the m × d matrix H . The matrix H
approximates the matrix Y in the sense that ‖HHT −Y Y T ‖2 is small. It is known that the best low
rank approximation can be obtained from the truncated SVD of Y . Suppose the SVD of Y is given
by: Y = UΣV T , then Y Y T = UΣ2UT , and the best possible HHT is

∑d
j=1 σ

2
juju

T
j , where the

vectors uj are the columns of the orthogonal matrix U . This is clearly satisfied if the matrix H is
chosen to be:

H = (h1, . . . , hd), hj = σjuj for j = 1, . . . , d

This shows that the matrix H can be calculated from the truncated SVD of the matrix Y . Classical
iterative approaches for calculating the truncated SVD have run time of O(dmN) (e.g., [23]).

Recently proposed algorithms that use randomization can compute the SVD much faster. See,
e.g., [13, 14, 15], and the experimental evaluation in [16]. Since our goal is computing the matrix
H and not the SVD, we observe that in some of these algorithms it is not necessary to pass through
the SVD, as the desired matrix H is computed in early or intermediate stages of the algorithm. We
illustrate this with the algorithm of [13].

To apply the algorithm of [13] for computing H we need the squared norms of all the columns of Y .
This is sometimes known in advance, or can be calculated in one pass at the cost of roughly 2mN .
Given these norms, the algorithm selects d columns at random, where the probability of selecting
the column yi is proportional to |yi|2. Without loss of generality suppose the selection is y1, . . . , yd.
The desired matrix H is formed by:

H = (h1, . . . , hd), hj = yj/|yj |2 for j = 1, . . . , d

To obtain the same accuracy as with the SVD method, one would need a larger value of d. Still,
it is shown in [13] that with high probability the increase in the value of d is only by a factor of
O(logN).

6 Experimental results

In this section we describe experimental results with the proposed algorithms. Our goal was to
evaluate the run time, stability, and accuracy of the algorithms. The relevant parameters for run time
are the amount of speedup for sparse dictionaries, and the amount of speedup gained by reducing
the rank of the data matrix. By stability we refer to a known problem with algorithms that require
orthogonalization of large matrices. The loss of orthogonality among the vectors may lead to the
selection of redundant columns not contributing to the reduction of the error (2). The accuracy is
related to the performance of the ISOLS-lowrank as compared with that of the ISOLS-exact.
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6.1 Some details about the implementation

In our implementation the low rank approximation of the data matrix Y was computed using the
technique of [15]. The idea is to compute a low rank orthonormal matrix Q of dimensions m × d
that approximately spans the column space of Y . Using Q one can compute the d × d matrix
W=QTY Y TQ in one pass over the data. Let W=SST be the Cholesky decomposition of W , and
set HT =STQT , where H is m × d. It is easy to show (see [15]) that if Q is a good in the sense of
QQTY ≈ Y then H is good in the sense of HHT ≈ Y Y T .

Instead of keeping the matrix Q explicitly we use the well known technique of Householder ma-
trices [23] to indirectly represent it. Observe that the matrix Q is used in steps 1.0 and 1.3 of the
algorithm. Both steps can be implemented with the Householder representation, so that only the
calculations involving the vector qj need to be performed outside of the Householder representation.

6.2 The experiments

We conducted two experiments with each dataset. Each experiment involved 7 runs, as explained
below.

Experiment 1. In this experiment we took both the data matrix Y and the dictionary matrix X
to be the same as the given dataset. This is the classical column subset selection problem, as dis-
cussed in Section 1. We ran this experiment with k in the range of 1 − 100, and for various val-
ues of d, the reduced rank of the data matrix. In particular the following values of d were used:
{1, 5, 10, 20, 50, 75, 100}.

Experiment 2. The data matrix Y was taken as identical to the dataset, and the value of d=50 was
used as the rank ofH in ISOLS-lowrank. The dictionary matrixX was created by randomly zeroing
out entries in the dataset so that the sparsity of the dictionary was increased. In particular, for p in
the range of {1, 5, 10, 20, 50, 75, 100} we zeroed out entries with probability of p/100. Thus, p is
the percentage of retained values. Observe that p = 100 is a special case of Experiment 1 with d=50.
But for smaller values of p the data matrix and the dictionary matrix are distinct.

Reported measurements. In each experiment we measured the run time and the approximation
error as a function of d and p. In the case of ISOLS-lowrank the reported run time does not include
the time taken to compute the low rank approximation to Y . Clearly, the measurements of run
time depend on the hardware, and may be influenced by background processes. But we believe that
the rate of change that was observed is properly reflecting the run time dependency on the above
parameters.

The approximation error was calculated according to Equation (2), and normalized so that the high-
est possible value (the squared norm of Y ) is 100. Thus, the reported approximation error values are
the percentage of the error as given by Equation (2).

6.2.1 Experiments with the TechTC01 dataset

This dataset is part of the Technion repository of text categorization datasets. It has m=163 rows
and N=29, 261 columns. The results of the experiments are summarized in Fig.5.

Running the ISOLS-exact for selecting 100 dictionary columns took 774 seconds. Using ISOLS-
lowrank with d=100 took 12 seconds, an improvement by a factor of 64. In the asymptotic limit the
run time is expected to be linearly related to d. The reported results show a reduction in time for
smaller d, but not linear dependency. (For example, the run time for d = 100 is not 10 times the run
time for d = 10.) This was observed with other datasets as well, and indicates that the computation
overhead is quite significant.

The dependency on p, the dictionary sparsity, is exactly as expected, with the run time going down
as the value of p is decreased.

The table and plots show the error of predicting the entire data matrix from selected dictionary
columns. Because of the rapid decrease in the error we describe the results of each experiment with
two plots. The first plot (on the left) shows the results for all tested values of k, while the second
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Run time as a function of H rank in ISOLS-approx Run time as a function of the dictionary sparsity (d=50)

k=10 k=20 k=30 k=40 k=50 k=60 k=70 k=80 k=90 k=100
d=50 p=1 33.394 20.242 13.005 8.945 6.008 3.964 2.500 1.767 1.315 0.974
d=50 p=50 21.241 10.995 7.270 4.992 3.392 2.290 1.478 1.015 0.725 0.439
d=1 19.088 12.192 8.557 7.061 5.947 4.802 4.157 3.586 3.167 2.781
d=50 10.957 6.137 3.962 2.605 1.758 1.208 0.825 0.578 0.391 0.267
d=100 10.957 6.137 3.952 2.608 1.752 1.151 0.720 0.445 0.288 0.189
exact 10.957 6.137 3.952 2.608 1.752 1.151 0.720 0.445 0.288 0.188
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Figure 5: Experiments with the TechTC01 dataset. The top part shows time dependency on d, the
degree of H in ISOLS-lowrank, and on p, the sparsity percentage. The table and the plots show how
the various parameters affect the accuracy. The error is specified as percentage of the initial error.

plot shows the results only for k in the range 50 − 100. Observe that there is very little difference
between the error of the columns selected by ISOLS-exact and those computed by ISOLS-lowrank
. Even in the extreme case where the entire data matrix is approximated by a single vector, the
IOLS-lowrank finds 100 columns that reduce the prediction error to less than 3%.

The experiments with very sparse dictionary show a decrease in the prediction accuracy, but the
decrease is much less than what we expected. We find it surprising that a small fraction of the data
can produce such accurate prediction of the entire data matrix. These observations are specific to
the TechTC01 dataset. They did not show up with other datasets.
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d=1 180.690
d=5 183.440
d=10 184.090
d=20 185.220
d=50 187.300
d=75 198.480
d=100 192.440

0 20 40 60 80 100

180

185

190

195

200

d

ru
n

tim
e

(s
ec

on
ds

)

p time
p=1 117.170
p=5 124.960
p=10 129.370
p=20 142.170
p=50 158.600
p=75 167.710
p = 100 187.300

0 20 40 60 80 100

120

140

160

180

p

ru
n

tim
e

(s
ec

on
ds

)

Run time as a function of H rank in ISOLS-approx Run time as a function of the dictionary sparsity (d=50)

k=10 k=20 k=30 k=40 k=50 k=60 k=70 k=80 k=90 k=100
d=50 p=1 93.410 88.290 84.110 80.649 77.740 75.297 73.310 71.818 70.743 70.039
d=50 p=50 39.417 34.450 31.870 30.070 28.680 27.543 26.633 25.860 25.190 24.594
d=1 27.520 23.870 22.282 20.491 19.128 18.321 17.746 17.074 16.456 16.098
d=50 24.887 21.780 19.792 18.447 17.400 16.569 15.906 15.354 14.907 14.493
d=100 24.887 21.777 19.787 18.441 17.365 16.533 15.840 15.264 14.738 14.288
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Figure 6: Experiments with the Day1 dataset. The top part shows time dependency on d, the degree
of H in ISOLS-lowrank, and on p, the sparsity percentage. The table and the plots show how the
various parameters affect the accuracy. The error is specified as percentage of the initial error.

6.2.2 Experiments with the Day1 dataset

This dataset is part of the “URL reputation” collection at the UCI Repository. It hasm=20, 000 rows
and N=3, 231, 957 columns. The data is very sparse. It occupies about 40 megabytes of memory,
while a non-sparse representation would require about 200 gigabytes. IOLS-exact ran too slow on
this dataset and all results were obtained with the IOLS-lowrank.

We ran the same set of experiments with this dataset as those applied to the TechTC01 dataset. The
results are very similar. They are summarized in Fig.6. The main difference is that the prediction
error did not go down as rapidly as in the TechTC01 case.
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Run time as a function of H rank in ISOLS-approx Run time as a function of the dictionary sparsity (d=50)

k=10 k=20 k=30 k=40 k=50 k=60 k=70 k=80 k=90 k=100

d=50 p=1 97.210 95.096 93.336 91.760 90.320 88.996 87.804 86.709 85.717 84.800
d=50 p=50 71.130 66.640 63.809 61.839 60.328 59.080 58.019 57.088 56.280 55.550
d=1 63.333 57.782 54.667 52.442 50.958 49.915 48.793 48.042 47.227 46.514
d=50 61.555 56.298 53.349 51.319 49.774 48.575 47.539 46.707 45.967 45.310
d=100 61.555 56.298 53.337 51.301 49.742 48.520 47.527 46.698 45.971 45.311
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Figure 7: Experiments with the gisette dataset. The top part shows time dependency on d, the degree
of H in ISOLS-lowrank, and on p, the sparsity percentage. The table and the plots show how the
various parameters affect the accuracy. The error is specified as percentage of the initial error.

6.2.3 Experiments with the gisette dataset

This dataset was used in the NIPS 2003 selection challenge. It has m=6, 000 rows and N=5, 000
columns. We ran the same set of experiments as with the previous two datasets, and the results are
summarized in Fig.7. IOLS-exact ran too slow on this dataset and all results were obtained with the
IOLS-lowrank. The results are similar to what was observed with the other datasets.

6.2.4 Summary

The experimental results mostly agree with theoretical analysis. The run time is improved with
the reduction in d and with the increase in sparsity. We observed that the dependency on d is
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monotone but not linear. Another unexpected observation is the level of prediction accuracy that can
be achieved when the ISOLS-lowrank uses small values of d.

We did not observe any stability issues. The prediction error kept improving with additionally
selected features, indicating that no redundant features were selected.

7 Concluding remarks

The problem that was discussed in this paper, approximating one matrix in terms some columns
of another matrix, is well known and appears to have many practical applications. The majority
of previous studies address the accuracy of the proposed scheme, but not the resources that are
needed to apply it to large matrices. We consider the CM algorithm of Civril and Magdon-Ismail,
established in [7], to be the current state-of-the-art. It reduces the O(kmnN) run time of the naive
approach to O(mnN), and further to O(knN) in the sparse case. Using a low rank approximation
to the data matrix the run time of the CM can be further reduced to O(dkn). On the Other hand,
the CM does not improve on the memory requirements of the naive approach. Both require O(mn)
memory to store a partially orthogonalized dictionary matrix, and the CM requires an additional
storage of nN .

The algorithms presented in this paper use an entirely different approach than the CM. They have the
same asymptotic complexity for the non-sparse case, and a better asymptotic complexity of O(nN)
for the sparse case. Using a low rank approximation to the data matrix the run time is further reduces
to O(dn). In addition to the run time our algorithms also require a significantly smaller amount of
memory, roughly km+ 2n floats.

To illustrate the difference consider the specific example of the Day1 dataset of Section 6.2.2. In
our experiments it took less than 4 minutes to select 100 columns, and the algorithm used less
than 150 megabytes of memory. In this example k = 100, d = 100, m=20, 000, N=3, 231, 957,
N=3, 231, 957. The naive method would be roughly mN ≈ 61010 time slower, taking more than
27 thousand years. It would also require roughly 200 gigabytes of memory. Using the CM the run
time would be only 100 times slower than in our approach, taking roughly 7 hours, but it would still
require around 200 gigabytes of memory.
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