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1 Proofs of theorems of Section 3

Algorithm 1 Riemannian coordinate minimization d?,
Input: Differentiable objective functiotf, initial matrix Uy € Oy4
t=20
while not convergedio
1. Sample uniformly at random a p4iKt), j(¢)) such thatl < i(t) < j(t) <d.
2. Ut-‘rl = argmin f (Ut : G(Zajv 6))
0

3.t=t+1.
end while

Definition 1. Riemannian gradient

The Riemannian gradier¥ f(U) of f at pointU € O, is the matrixU(Q, whereQ) € Skew(d),
Qi =—Q;; =V, f(U),1 <1< j <disthe directional derivative as defined in Eq. 1 of the main
text,Qanini = 0. The norm of the Riemannian gradiefi f(U)||> = Tr(Vf(U)Vf(U)T) =
||Q||fro

Definition 2. A pointU, € Oy is asymptotically stablevith respect to Algorithrall if it has neigh-
borhoodV such that all sequences generated by Algoriffim 1 with stapointlU, € V converge
toU..

Theorem 1. Convergence to local optimum

(1) The sequence of iteratés of Algorithm[d satisfieslim;_, . ||V f(U;)|| = 0. This means that
the accumulation points of the sequed&g }:°, are critical points off.

(2) Assume the critical points gfare isolated. LelU, be a critical point off. ThenU. is a local
minimum off if and only if it is asymptotically stable with regard to thegeience generated by
Algorithm[1.

Proof. (1) Algorithm[d is obtained by taking a step in each iteratioamthe direction of the tangent
vector Z;, such that for the coordinatés(t), j(¢t)) we have(Z;),; = —(Vf(U))ij, (Zi)ji =
—(Vf(U))ji , and(Z;); = 0 for all other coordinategk, [).

The sequence of tangent vectoss, < Ty,0, is easily seen to be gradient related:
limsup k — co(V£(Uy), Z;) < 0[. This follows fromZ; being equal to exactly two coordinates
of V f(U,), with all other coordinates being 0.

For a rigorous proof we need to slightly complicate the sampling procedlire 1 of Algorithm[d, such
that coordinates with 0 gradient are not resampled until a non-zediegtds sampled. Alternatively we can
state that the result holds with probability 1.



Using the optimal step size as we do assures at least as fargeraasef (U;) — f(U.+1) as using
the Armijo step size rule [1,/2]. Using the fact that the maldifO, is compact, we obtain by
theorem 4.3.1 and corroboratory 4.3.2 of Absil etial. [3}tha;_, o ||V f(U:)|| =0

(2) Since Algorithni L produces a monotonically decreaseguencef (U;), and since the manifold
Qg4 is compact, we are in the conditions of Theorems 4.4.1 an@ 4f4Absil et al. [3]. These imply
that the only critical points which are local minima are agyotically stable.

O

We now provide a rate of convergence proof. This proof is arRienian version of the proof for the
rate of convergence of Euclidean random coordinate defmenon-convex functions given![4].
Definition 3. For an iteratet of Algorithmd, and a set of indicés(¢), j(¢), we define the auxiliary
single variable functior” :

9 (0) = f Uy - G(i, j,0)), )

Note thatg,” are differentiable and periodic with a period &f. sinceQ, is compact and is
differentiable there exists a single Lipschitz constaff) > 0 for all g;”.

Theorem 2. Rate of convergence

Let U; be the sequence generated by Algorifiim 1, &nlde a universal Lipschitz constant fgi,
which always exists by compactness and differentiability.o For the sequence of Riemannian
gradientsV f(U,;) € Ty, O4 we have:

L'd2 Uo) — min
s B(1V50))fg) < LT Jmin) @

Lemma 1. Letg : R — R be a periodic differentiable function, with peri@a. Then there exists a
positive constant > 0 such that for alld € [—r 7]: g(6) < g(0) + 0¢'(0) + £62.

Proof. Sinceg is periodic it is bounded, with bounded derivatives. Ldie a Lipschitz constant on
the derivativey’. We thus have, for aH,

19'(0) — ¢'(0)] < L|9]. We now havey(8) — g(0) — 0g'(6) = [ g'(r) — ¢’ (0)dr < [} |g'(r) —
g(0)|dr < [) Llz|dr = L2, O
Corollary 1. Letg = gf(ﬂﬂ)j(tﬂ)- Under the conditions of Algorithid 1, we have:

fU) — f(Ugsq1) > ﬁvijf(Ut)Q for the same constauit defined i L.

Proof. By the definition ofy we havef (Uz+1) = mgin g(0), and we also havg(0) = f(U:). Finally,
by Eq. 1 of the main paper we ha¥%g; f (U;) = ¢'(0). From Lemmadll, we haveg(#) — ¢(0) <
0g'(0) + £62. Minimizing the right-hand side with respectdowe see thamgin {9(0) —g(6)} >
57 (¢'(0))%. Substitutingf (U;11) = min 9(8) .f(Uy) = g(0), and - V;; f(U:) = ¢'(0) completes
the result. 0O
Proof of Theorerfil2By Corollary[d, we havef (U;) — f(Us41) > 57 Vi f(U;)?. By Definition[d

£V, f(U) is the (3, 5) and(j,1) entry of V f(U,). If we take the expectation of both sides with
respect to a uniform random choice of indiéeg such thatl < i < j < d, we have:

B0 = F(Ues)] = s IV SO )

Summing the left-hand side gives a telescopic sum which edrobnded by (Uy) — (}Iellél fU) =
d
f(Wo) — fimin- Summing the right-hand side and using this bound, we obtain

T
SCE[IVHUIE) < L-d*(f(Uo) = fmin) 4)
t=0
i 3 L'dQ(f(UO)*fmin)
This means thaotrgtngE [IVf(U)]]3] < = tmnd, O



2 Proofs of theorems of section 5

Definition 4. AtensorT is orthogonally decomposable if there exists an orthondisatof vectors
v1,...vq € R?, and positive scalarg, ... \; > 0 such that:

d
T:ZM(%'@%@W), (5)
=1
Theorem 3. LetT € R?*4*4 have an orthogonal decomposition as in Definifidn 4, and ictars
the optimization problem

d
max f(U) = T(us, us, w;), (6)
=1

UecOqy

whereU = [ujus ... uq). The stable stationary points of the problem are exactihagbnal
matricesU such thatu; = v(;) for a permutationz on [d]. The maximum value they attain is

Z?:l >\i-

Proof. For a tensofI” denote vetT”) € R? the vectorization off” using some fixed order of
indices. Se'(U) = Y0, (i ® u; @ w;), With T(U)ape = Y2 tiatiptiie. The sum of trilinear
forms in Eq[6 is equivalent to the inner productif’ betweerl (U) andT: Zle T (wg, wiyu) =

Z;izl Zabc TapeUiqUiplic = Zabc Tabe (Z?Zl uia“ib“i(z) = Zabc TabcT(U)abc = VeqT) .
veqT'(U)). Consider the following two facts:

Q) T(U)abc < 1 Va,b,c = 1...d: since the vectors,; are orthogonal, all their components
Uiq < 1. ThusTA(U)a,,C = Z?Zlumuibuic < Zle u;u;p, =< 1, where the last inequality is
because the sum is the inner product of two rows of an orthalguoatrix.

(2) |lvedT(U))||3 = d. This is easily checked by forming out the sum of squaresi@ip) using
the orthonormality of the rows and columns of the matfrix

Assume without loss of generality th&€ = I;. This is because we may replace the terms
T (u;, ui,u;) in the objective withl' (V7 u;, VT u;, VTu;), and because the manifold” O, is iden-
tical to O4. Thus we have thdt is a diagonal tensor, with,,, = A, > 0,a = 1...d. Considering
facts (1) and (2) above, we have the following inequality:

d

T(u, ug, ;) = TU))-T < 7
[%%Z £ (wi, wi,u;) gé_%iveq (U)) > (7)
max vedT) - T s.t. |vedT)|| <1 A ||vedT)||2 =d. (8)
T

T is diagonal by assumption, with exactlynon-zero entires. Thus the maximum [of (5) is attained
if and only if T,,,, = 1, a = 1...d, and all other entries df are0. The value at the maximum is
then> %, \;.

The diagonal ones tens@tcan be decomposed inEf=1 e; ® e; ® e;. Interestingly, in the tensor
case, unlike in the matrix case, the decomposition of othagtensors isiniqueup to permutation
of the factors|[5| 6]. Thus, the only solutions which attaie tmaximum ofl7 are those where
ui:eﬂ(i),izl,...d. O

3 Algorithm for streaming sparse PCA

Following are the details for the streaming sparse PCA warsf our algorithm used in the experi-
ments of section 4. The algorithm starts with running thgiogl coordinate minimization procedure
on the firstm samples. It then chooses the column with the Iéaand replaces it with a new data
sample, and then re-optimizes on the new set of samplese Thao need for it to converge in the
inner iterations, and in practice we found that ordesteps after each new sample are enough for
good results.



Algorithm 2 Riemannian coordinate minimization for streaming spaGA P

Input: Data streamu; € R?, number of sparse principal componentsinitial matrix Uy € O,y,,

sparsity parameter > 0, number of inner iterations.
AU = [a1az .. .an] - Uy . HAU is of sized x m
while not stoppedio
fort=1...Ldo
1. Sample uniformly at random a pdiit), j(¢)) such thatl <i(t) < j(¢t) < m.
2. 0,41 = argmax
%

S ([leos(8) (AU ey + sin(0)(AU )0 — 712
+[| = 5in(0) (AU) i) + cos(0) (AU ) iy | — ~1%)-
3AU = AU - G(i(1),j(t), Or41)-
end for
4. iy = argminl||(AU). ;
=1

|2

5. Sample new data point,.,,.
6. (AU):.,im”,, = Qpew-
end while
Z = solveForZ(AU,~) Il Algorithm 6 of

Jourree etal. [[I7].

Output: Z € R¥x™
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