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1 Proofs of theorems of Section 3

Algorithm 1 Riemannian coordinate minimization onOd

Input: Differentiable objective functionf , initial matrixU0 ∈ Od

t = 0
while not convergeddo

1. Sample uniformly at random a pair(i(t), j(t)) such that1 ≤ i(t) < j(t) ≤ d.
2. Ut+1 = argmin

θ

f (Ut ·G(i, j, θ)).

3. t = t+ 1.
end while

Definition 1. Riemannian gradient
The Riemannian gradient∇f(U) of f at pointU ∈ Od is the matrixUΩ, whereΩ ∈ Skew(d),
Ωji = −Ωij = ∇ijf(U), 1 ≤ i < j ≤ d is the directional derivative as defined in Eq. 1 of the main
text, andΩii = 0. The norm of the Riemannian gradient||∇f(U)||2 = Tr(∇f(U)∇f(U)T ) =
||Ω||2fro.

Definition 2. A pointU∗ ∈ Od is asymptotically stablewith respect to Algorithm 1 if it has neigh-
borhoodV such that all sequences generated by Algorithm 1 with starting pointU0 ∈ V converge
toU∗.

Theorem 1. Convergence to local optimum
(1) The sequence of iteratesUt of Algorithm 1 satisfies:limt→∞ ||∇f(Ut)|| = 0. This means that
the accumulation points of the sequence{Ut}

∞
t=1 are critical points off .

(2) Assume the critical points off are isolated. LetU∗ be a critical point off . ThenU∗ is a local
minimum off if and only if it is asymptotically stable with regard to the sequence generated by
Algorithm 1.

Proof. (1) Algorithm 1 is obtained by taking a step in each iterationt in the direction of the tangent
vectorZt, such that for the coordinates(i(t), j(t)) we have(Zt)ij = −(∇f(Ut))ij , (Zt)ji =
−(∇f(Ut))ji , and(Zt)kl = 0 for all other coordinates(k, l).

The sequence of tangent vectorsZt ∈ TUt
Od is easily seen to be gradient related:

lim sup k → ∞〈∇f(Ut), Zt〉 < 0 1. This follows fromZt being equal to exactly two coordinates
of ∇f(Ut), with all other coordinates being 0.

1For a rigorous proof we need to slightly complicate the sampling procedurein line 1 of Algorithm 1, such
that coordinates with 0 gradient are not resampled until a non-zero gradient is sampled. Alternatively we can
state that the result holds with probability 1.
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Using the optimal step size as we do assures at least as large an increasef(Ut)− f(Ut+1) as using
the Armijo step size rule [1, 2]. Using the fact that the manifold Od is compact, we obtain by
theorem 4.3.1 and corroboratory 4.3.2 of Absil et al. [3] that limt→∞ ||∇f(Ut)|| = 0

(2) Since Algorithm 1 produces a monotonically decreasing sequencef(Ut), and since the manifold
Od is compact, we are in the conditions of Theorems 4.4.1 and 4.4.2 of Absil et al. [3]. These imply
that the only critical points which are local minima are asymptotically stable.

We now provide a rate of convergence proof. This proof is a Riemannian version of the proof for the
rate of convergence of Euclidean random coordinate descentfor non-convex functions given [4].
Definition 3. For an iteratet of Algorithm 1, and a set of indices(i(t), j(t), we define the auxiliary
single variable functiongijt :

g
ij
t (θ) = f (Ut ·G(i, j, θ)) , (1)

Note thatgijt are differentiable and periodic with a period of2π. sinceOd is compact andf is
differentiable there exists a single Lipschitz constantL(f) > 0 for all gijt .
Theorem 2. Rate of convergence
Let Ut be the sequence generated by Algorithm 1, andL be a universal Lipschitz constant forf ,
which always exists by compactness and differentiability of f . For the sequence of Riemannian
gradients∇f(Ut) ∈ TUt

Od we have:

max
0≤t≤T

E
[

||∇f(Ut)||
2
2

]

≤
L · d2 (f(U0)− fmin)

T + 1
. (2)

Lemma 1. Letg : R → R be a periodic differentiable function, with period2π. Then there exists a
positive constantL > 0 such that for allθ ∈ [−π π]: g(θ) ≤ g(0) + θg′(0) + L

2 θ
2.

Proof. Sinceg is periodic it is bounded, with bounded derivatives. LetL be a Lipschitz constant on
the derivativeg′. We thus have, for allθ,
|g′(θ) − g′(0)| ≤ L|θ|. We now have:g(θ) − g(0) − θg′(θ) =

∫ θ

0
g′(τ) − g′(0)dτ ≤

∫ θ

0
|g′(τ) −

g′(0)|dτ ≤
∫ θ

0
L|τ |dτ = L

2 θ
2.

Corollary 1. Letg = gt+1
i(t+1)j(t+1). Under the conditions of Algorithm 1, we have:

f(Ut)− f(Ut+1) ≥
1
2L∇ijf(Ut)

2 for the same constantL defined in 1.

Proof. By the definition ofg we havef(Ut+1) = min
θ

g(θ), and we also haveg(0) = f(Ut). Finally,

by Eq. 1 of the main paper we have∇ijf(Ut) = g′(0). From Lemma 1, we haveg(θ) − g(0) ≤

θg′(0) + L
2 θ

2. Minimizing the right-hand side with respect toθ, we see thatmin
θ

{g(0) − g(θ)} ≥

1
2L (g

′(0))2. Substitutingf(Ut+1) = min
θ

g(θ) ,f(Ut) = g(0), and 1
2L∇ijf(Ut) = g′(0) completes

the result.

Proof of Theorem 2.By Corollary 1, we havef(Ut) − f(Ut+1) ≥
1
2L∇ijf(Ut)

2. By Definition 1
±∇ijf(Ut) is the(i, j) and(j, i) entry of∇f(Ut). If we take the expectation of both sides with
respect to a uniform random choice of indicesi, j such that1 ≤ i < j ≤ d, we have:

E [f(Ut)− f(Ut+1)] ≥
1

L · d2)
||∇f(Ut)||

2, (3)

Summing the left-hand side gives a telescopic sum which can be bounded byf(U0)− min
U∈Od

f(U) =

f(U0)− fmin. Summing the right-hand side and using this bound, we obtain
T
∑

t=0

E
[

||∇f(Ut)||
2
2

]

≤ L · d2(f(U0)− fmin) (4)

This means thatmin
0≤t≤T

E
[

||∇f(Ut)||
2
2

]

≤ L·d2(f(U0)−fmin)
T+1 .
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2 Proofs of theorems of section 5

Definition 4. A tensorT is orthogonally decomposable if there exists an orthonormal set of vectors
v1, . . . vd ∈ R

d, and positive scalarsλ1, . . . λd > 0 such that:

T =
d

∑

i=1

λi(vi ⊗ vi ⊗ vi), (5)

Theorem 3. Let T ∈ Rd×d×d have an orthogonal decomposition as in Definition 4, and consider
the optimization problem

max
U∈Od

f(U) =
d

∑

i=1

T (ui, ui, ui), (6)

whereU = [u1 u2 . . . ud]. The stable stationary points of the problem are exactly orthogonal
matricesU such thatui = vπ(i) for a permutationπ on [d]. The maximum value they attain is
∑d

i=1 λi.

Proof. For a tensorT ′ denote vec(T ′) ∈ R
d3

the vectorization ofT ′ using some fixed order of
indices. Set̂T (U) =

∑d

i=1(ui ⊗ ui ⊗ ui), with T̂ (U)abc =
∑d

i=1 uiauibuic. The sum of trilinear
forms in Eq. 6 is equivalent to the inner product inR

d3

betweenT̂ (U) andT :
∑d

i=1 T (ui, ui, ui) =
∑d

i=1

∑

abc Tabcuiauibuic =
∑

abc Tabc

(

∑d

i=1 uiauibuic

)

=
∑

abc TabcT̂ (U)abc = vec(T ) ·

vec(T̂ (U)). Consider the following two facts:
(1) T̂ (U)abc ≤ 1 ∀a, b, c = 1 . . . d: since the vectorsui are orthogonal, all their components
uia ≤ 1. Thus T̂ (U)abc =

∑d

i=1 uiauibuic ≤
∑d

i=1 uiauib =≤ 1, where the last inequality is
because the sum is the inner product of two rows of an orthogonal matrix.
(2) ||vec(T̂ (U))||22 = d. This is easily checked by forming out the sum of squares explicitly, using
the orthonormality of the rows and columns of the matrixU .
Assume without loss of generality thatV = Id. This is because we may replace the terms
T (ui, ui, ui) in the objective withT (V Tui, V

Tui, V
Tui), and because the manifoldV TOd is iden-

tical toOd. Thus we have thatT is a diagonal tensor, withTaaa = λa > 0, a = 1 . . . d. Considering
facts (1) and (2) above, we have the following inequality:

max
U∈Od

d
∑

i=1

T (ui, ui, ui) = max
U∈Od

vec(T̂ (U)) · T ≤ (7)

max
T̂

vec(T̂ ) · T s.t. ||vec(T̂ )||∞ ≤ 1 ∧ ||vec(T̂ )||22 = d. (8)

T is diagonal by assumption, with exactlyd non-zero entires. Thus the maximum of (5) is attained
if and only if T̂aaa = 1, a = 1 . . . d, and all other entries of̂T are0. The value at the maximum is
then

∑d

i=1 λi.

The diagonal ones tensor̂T can be decomposed into
∑d

i=1 ei ⊗ ei ⊗ ei. Interestingly, in the tensor
case, unlike in the matrix case, the decomposition of orthogonal tensors isuniqueup to permutation
of the factors [5, 6]. Thus, the only solutions which attain the maximum of 7 are those where
ui = eπ(i), i = 1, . . . d.

3 Algorithm for streaming sparse PCA

Following are the details for the streaming sparse PCA version of our algorithm used in the experi-
ments of section 4. The algorithm starts with running the original coordinate minimization procedure
on the firstm samples. It then chooses the column with the leastl2 and replaces it with a new data
sample, and then re-optimizes on the new set of samples. There is no need for it to converge in the
inner iterations, and in practice we found that orderm steps after each new sample are enough for
good results.
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Algorithm 2 Riemannian coordinate minimization for streaming sparse PCA

Input: Data streamai ∈ R
d, number of sparse principal componentsm, initial matrix U0 ∈ Om,

sparsity parameterγ ≥ 0, number of inner iterationsL.
AU = [a1a2 . . . am] · U0 . //AU is of sized×m
while not stoppeddo

for t = 1 . . . L do
1. Sample uniformly at random a pair(i(t), j(t)) such that1 ≤ i(t) < j(t) ≤ m.
2. θt+1 = argmax

θ
∑d

k=1([|cos(θ)(AU)ki(t) + sin(θ)(AU)kj(t)| − γ]2+
+[| − sin(θ)(AU)ki(t) + cos(θ)(AU)kj(t)| − γ]2+).
3.AU = AU ·G(i(t), j(t), θt+1).

end for
4. imin = argmin

i=1...m
||(AU):,i||2.

5. Sample new data pointanew.
6. (AU):,imin

= anew.
end while
Z = solveForZ(AU, γ) // Algorithm 6 of
Jourńee et al. [7].

Output: Z ∈ R
d×m
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