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Abstract

Optimizing over the set of orthogonal matrices is a centoathgonent in prob-
lems like sparse-PCA or tensor decomposition. Unfortupagech optimization

is hard since simple operations on orthogonal matrice$ydagiak orthogonality,
and correcting orthogonality usually costs a large amoficbmputation. Here
we propose a framework for optimizing orthogonal matridbaf is the parallel

of coordinate-descent in Euclidean spaces. It is basd@ivens-rotationsa fast-

to-compute operation that affects a small number of enini¢ise learned matrix,
and preserves orthogonality. We show two applications isfdbproach: an al-
gorithm for tensor decomposition that is used in learningtane models, and an
algorithm for sparse-PCA. We study the parameter regimaevaesivens rota-
tion approach converges faster and achieves a superiorl modegenome-wide
brain-wide mRNA expression dataset.

1 Introduction

Optimization over orthogonal matrices — matrices whosesramd columns form an orthonormal
basis ofR? — is central to many machine learning optimization probler®sominent examples
includePrincipal Component Analysi®CA), Sparse PCAandIindependent Component Analysis
(ICA). In addition, many new applications of tensor orthogonalodepositions were introduced
recently, including Gaussian Mixture Models, Multi-viewodels and Latent Dirichlet Allocation
(e.g., [1/2)).

A major challenge when optimizing over the set of orthogonatrices is that simple updates such as
matrix addition usually break orthonormality. Correctimgorthonormalizing a matri¥” € R?*¢

is typically a costly procedure: even a change to a singleete of the matrix, may requir@(d*)
operations in the general case for re-orthogonalizationthis paper, we present a new approach
for optimization over the manifold of orthogonal matricésat is based on a series of sparse and
efficient-to-compute updates that operaithin the set of orthonormal matrices, thus saving the
need for costly orthonormalization. The approach can be ag#he equivalent of coordinate descent
in the manifold of orthonormal matrices. Coordinate desoegthods are particularly relevant for
problems that are too big to fit in memory, for problems whare might be satisfied with a partial
answer, or in problems where not all the data is availabl@atione [3].

We start by showing that the orthogonal-matrix equivaldra single coordinate update is applying
a singleGivens rotationto the matrix. In sectiohl3 we prove that for a differentiabbgective the
procedure converges to a local optimum under minimal c@rdit and prove a®(1/T') conver-
gence rate for the norm of the gradient. Sections 4.1 addes@ribe two applications: (1) sparse
PCA, including a variant for streaming data; (2) a new metloo@rthogonal tensor decomposition.
We study how the performance of the method depends on théepnethyperparameters using syn-
thetic data, and demonstrate that it achieves superioracgon an application of sparse-PCA for
analyzing gene expression data.



2 Coordinate descent on the orthogonal matrix manifold

Coordinate descent (CD) is an efficient alternative to gmaidilescent when the cost of computing
and applying a gradient step at a single coordinate is selalive to computing the full gradient. In
these cases, convergence can be achieved with a smalleenofrdomputing operations, although
using a larger number of (faster) steps. Applying coordirtEscent to optimize a function involves
choosing a coordinate basis, usually the standard basen @diculating a directional derivative in
the direction of one of the coordinates. And finally, updatime iterate in the direction of the chosen
coordinate.

To generalize CD to operate over the set of orthogonal nestrize need to generalize these ideas of
directional derivatives and updating the orthogonal matra “straight direction”. In the remaining
of this section, we introduce the set of orthogonal matri¢eég as a Riemannian manifold. We
then show that applying coordinate descent to the Riemargradient amounts to multiplying by
Givens rotations. Throughout this section and the nextptijective function is assumed to be a
differentiable functionf : Oy — R.

2.1 The orthogonal manifold and Riemannian gradient

The orthogonal matrix manifold, is the set ofl x d matricesU such that/U” = UTU = I,. It
isa d(d U dimensional smooth manifold, and is an embedded submdmfdhe Euclidean space

Rixd [4]. Each pointU € O, has a tangent space associated with {1 dimensional vector
space, that we will use below in order to capture the notiotdivEction” on the manifold. The
tangent space is denotd@ 04, and defined by Oy = {Z € RX4 Z =UQ : Q = —-QT} =
USkew(d), whereSkew(d) is the set of skew-symmetri€x d matrices.

The natural generalization of straight lines to manifoldsgeodesic curvesA geodesic curve is
the shortest curve between two points on the manifold, oivatpntly, a curve with no acceleration
tangent to the manifold [4]. For a poidt € O, and a “direction”UQ2 € Ty Oy there exists a
single geodesic line that passes throdgm directionf). Fortunately, while computing a geodesic
curve in the general case might be hard, computing it for tieogonal matrix manifold has a
closed form expressiony : (—1,1) — Og4, v(0) = UEXpm(6£?), wherev(0) with § € (—1,1) is
the parameterization of the curve, and Expm is the matrioegptial function. In the special case
where the operatdEzpm/(2) is applied to a skew-symmetric matfix it maps(2 into an orthogonal
matrix[l. As a result;y(9) = UExpm(65?) is also an orthogonal matrix for alt1 < 6 < 1. This
provides a useful parametrization for orthogonal matrices

In analogy to the Euclidean case, the Riemannian diredtiberdvative of f in the direction of a
vectorUS2 € Ty Oy is defined as the derivative of a single variable functionohhinvolves looking
at f along a curvel [4]:

Val(U) = 76O, = 5 UExpmea)| @

Note thatV f(U) is a scalar. The definition means that the dlrectlonal devivas the limit of f
along the geodesic curve going throughn the directionU$2. Since the Riemannian equivalent of
walking in a straight line is walking along the geodesic eyrtaking a step of size > 0 from a
pointU € Oy in directionU) € Ty O, amounts to:

Unert = UEXpM(nQ?) . (2)

We also have to define the orthogonal basisSTIaEw( ). Here we use{ele —eje

d}. We denote each basis vectorfdg = e;je] —ejel, 1 <i < j<d.

1<i< <

Z

2.2 Givens rotations as coordinate descent

Coordinate descent is a popular method of optimization idifiean spaces. It can to be more effi-
cient than computing full gradient steps when it is posgiblél) compute efficiently the coordinate
directional derivative, and (2) apply the update efficignil/e will now show that in the case of the
orthogonal manifold, applying the update (step 2) can besget efficiently. The cost of computing
the coordinate derivative (step 1) depends on the specifizenaf the objective functiorf, and we
we show below several cases where that can be achievedrfficie

'Because Exptif2) Expm(Q) T = Expm(Q)Expm(Q7) = Expm(Q)Expm(—Q) = I




Let H;; be a coordinate direction, 18, f(U) be the corresponding directional derivative, and
choose step sizg > 0. A straightforward calculation based on El 2 shows thatughgate
Unezt = UEXprT‘(_nHzg) ObeyS

Expm(—nH;;) =
- 0 0 cee 07
0 - costn) - —sin(m) - 0
(:) sm(n) cos:(n) 0
R T

This matrix is known as &ivens rotation]5] and is denoted+(:, j, —n). It hascos(n) at the(i, i)
and(j, j) entries, andtsin(n) at the(j,¢) and (7, j) entries. It is a simple and sparse orthogonal
matrix, with a fast implementation in low-level linear alga subroutines like BLAS. For a dense
matrix A € R4*4, the linear operationl — AG(i, j,n) rotates theé'* andj* columns ofA by

an anglen in plane they span. Computing this operation cagtanultiplications and additions.

As a result, computing Givens rotations successively fbr‘i% coordinatesH;; takesO(d?)
operations, the same order as ordinary matrix multiplcati Therefore the relation between the
cost of a single Givens relative to a full gradient updatdéssame as the relation between the cost
of a single coordinate update and a full update is in Euclidgeace. We note that any determinant-1

orthogonal matrix can be decomposed into at nfé%?l) Givens rotations.
2.3 Coordinate minimization algorithm with Givens rotations

Based on the definition of Givens rotation, a natural alpanifor optimizing over orthogonal ma-

trices is to perform a sequence of rotations, where eactiontis equivalent to a coordinate-step in
CD. To fully specify the algorithm we need two more ingredger{l) Selecting a schedule for going

over the coordinates and (2) Selecting a step size. For stihgdwe chose here to use a random
order of coordinates, following many recent coordinatecdas papers [3,/6/) 7]. For choosing the
step sizep we use exact minimization, since we found that for the pnoisleve attempted to solve,

using exact minimization was usually the same order of ceri as performing approximate min-

imization (like using an Armijo step rulél[8] 4]). Based omsle two decisions, Algorithn](1) is a

random coordinate minimization technique.

Algorithm 1 Riemannian coordinate minimization d¥;

Input: Differentiable objective functiotf, initial matrix Uy € Oy
t=0
while not convergedio
1. Sample uniformly at random a p&ii(t), j(¢)) such thatl < i(¢t) < j(t) <d.
2. 9t+1 = argmin f (Ut ’ G(Zm]v 9))
6

3. Ut+1 = Ut . G(’L,], 0t+1)'
4.t =1t + 1.
end while
Output: Utfinal

3 Convergence rate for Givens coordinate minimization

Assume that the objective functighis differentiable.We show that Algorithm 1 converges tdicai
point of the functionf, and the only stable convergence points are local minimafuteer show
that the expectation w.r.t. the random choice of coordmatehe squared,-norm of the Rieman-
nian gradient converges towith a rate ofO(%) whereT is the number of iterations. The proofs,
including some auxiliary lemmas, are provided in the sumpgletal material. Overall we provide
the same convergence guarantees as provided in standaobmeex optimization (e.g.,[9] 8]). As
in the Euclidean case, stronger assumptions, such as rithodovexity of f, could yield stronger



results. However, we have so far not found an interesting cdsn objective function which is
manifold-convex on the orthogonal manifold.

Theorem 1. Convergence to local optimum

(1) The sequence of iteratés of Algorithm [1) satisfiestim;_, - ||V f(U)|| = 0. This means that
the accumulation points of the sequed&g }:°, are critical points off.

(2) Assume the critical points gfare isolated. Lel, be a critical point off. ThenU, is a local
minimum off if and only if it is asymptotically stable with regard to thegaience generated by
Algorithm [3).

Theorem 2. Rate of convergence

Let U, be the sequence generated by Algorithin (1), &rae a universal Lipschitz constant fgy
which always exists by compactnes&gfand differentiability off. For the sequence of Riemannian
gradientsV f(U;) € Ty, O4 we have:

L- d2 Uy) — min
Or;zingE IV f(U)13] < (sz(“ _;(_J)l e

(3)
The proof is a Riemannian version of the proof for the ratemfvergence of Euclidean random
coordinate descent for non-convex functidns [7] and is ioled as supplemental material.

4 Results

We applied Givens coordinate minimization to two problei@parse PCA (SPCA) and orthogonal
tensor decomposition, and compare its performance witk sfahe art methods - the generalized
power method for SPCA [10] and the tensor power method [1feosor decomposition. For SPCA
we find our method finds sparser solutions faster than the etitiom. For tensor decomposition we
find that our method finds better solutions than the compatithough not necessarily faster.

4.1 Sparse PCA

Principal component analysis (PCA) is a basic dimensignediducing technique used throughout
the sciences. One drawback of ordinary PCA is lack of intggnility. In the data matrixl € R?x™,
each dimension usually has an understandable meaningasubk level of expression of a certain
gene. The dimensions of the PCA transformed matrix howestyaically linear combinations of
all gene expression levels, and as such are much more ditficuterpret. A common approach to
finding interpretableprincipal components is Sparse PCAI[L1, 10]. SPCA aims tosfirldading
vectorsz; € R as in PCA, which are also sparse. In the gene-expressionpbathe non-zero
components of; might correspond to a few genes that explain well the streatfithe dataA.

One of the most popular approaches for solving the problefimdihg sparse principal components
is the work by Jourgee et al.|[10]. They show how to solve the SPCA problem by foansng it to
a problem of finding a certain matrix with orthogonal columns

argmax ) S LA -U)y| =2, st U € R™™, UTU = I,,,, wheren is the number of

samplesd is the input dimensionality anch is the number of PCA components computed. This
objective is once-differentiable and the objective matfigrows with the number of samples

If we set number of components to be equal to the number of samplewe have that the objective
matrix U is an orthogonal matrix, and can apply Algorithin] (1)) dthe¢o solve the optimization
problem above. At each roungfor choice of coordinate§, j) and a matrix/; € Oy, the resulting
coordinate minimization prob[dem is:

argmin — Z[\cos(@)(AUt)ki + sin(0) (AU ) ;| — ’Y]i
0 1 (4)

+ [| = sin(0) (AU ki + cos(0) (AU )x;| — 7)2-

In practice, there is no need to store the matriéesr memory, and one can work directly with the
matrix AU;. Evaluating the above expression for a giverequiresO(d) operations. We found in
practice that optimizing required an order of 5-10 evatuai

In most cases researchers are interested to obtain onlylaremeer of components, and so usu-
ally the number of components is << n. We therefore developed a streaming version of our
procedure. For a small given, we treat the data as if only, samples exist at any time, giving an
intermediate modellU € R¥*™. After a few rounds of optimizing over this subset of sampies
use a heuristic to drop one of the previous samples and iocatga new sample. This gives us a
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Figure 1: (a) The explained variance and (b) The number ofzavos as function of FLOPS of the
coordinate minimization method and of the generalized ponsthod bel[10], on a prostate cancer
gene expression dataset. The size of the sparse PCA matixgg0 x 102.

streaming version of the algorithm because in every phaseesd onlym samples of the data in
memory. The full details of the algorithm are given in thegemental material.

Experiments

We first examine the case where= n. We used the prostate cancer gene expression data by Singh
et al. [12]. This dataset consists 102 samples over 12,600sgeNe compared the performance

of our approach with that of thEeneralized Power Methdd(0]. As can be seen in Figuké 1, the
Givens coordinate minimization method find a sparser smiutiith better explained variance, and
does so faster than the generalized power method.

We tested the streaming version of the coordinate minincizetlgorithm for SPCA on a recent
large gene expression data set collected from of humans[a8], measuring the expression of
20,000 genes across 3000 locations. Sparse PCA attempgitadff two variables: the fraction
of data variance that is explained by the model’'s componamis the level of sparsity of the com-
ponents. In our experiment, we monitor a third importanapaeter, the number of floating point
operations (FLOPS) performed to achieve a certain solutiéa again compared the performance
of our approach with that of th@eneralized Power Methdd(]. We split the data into a train and
test and evaluated the amount of residual variance expldip¢he model on the test set.

We used a range of values and stopping criteria for both algorithms. Each d@mrdgives rise to

a different tradeoff between sparsity, variance explaimedi number of FLOPS. Figuré 2 demon-
strates the tradeoff between floating point operations apthmed variance for sparse PCA with 3,
5 and 10 components and with sparsity levels of 5%, and 20%h Het represents one instance of
the algorithm that was run with a certain valueyaéind stopping criterion. To avoid clutter we only
show instances which performed best in terms of explaineidvee or few FLOPS. When strong
sparsity is required (5% or 10% sparsity), the Givens-imatoordinate descent algorithm finds
solutions faster (blue rectangles are more to the left imff€i@), and these solutions are similar or
better in terms of explained variance. For low-dimensidesd sparse solutions (20% sparsity) we
find that the generalized power method finds comparable termilutions using the same compu-
tational cost, but only when the number of components islsambeen in Figure 2.b,d,f.

4.2 Orthogonal tensor decomposition

Recently it has been shown that many classic machine leaprioblem such as Gaussian Mix-
ture Models and Latent Dirichlet Allocation can be solveficently using 3rd order moments
[1,12,[14]. These methods ultimately rely on finding an orttveay decomposition of 3-way tensors
T € R¥*4xd and reconstructing the solution from the decompositione Broblem of finding an
orthogonal decomposition for a tensbre R?*¢*4 can be naturally cast as a problem of optimiza-
tion over the orthogonal matrix manifold. We apply Algonih() to this problem, and compare its
performance on a task of finding a Gaussian Mixture Model eighate-of-the-art tensor decomposi-
tion method, the robust Tensor Power Methad [1]. We find thatGivens coordinate minimization
method consistently finds better solutions when the numbmiixdure components is large.

Definition 1. A symmetric tensdr is orthogonally decomposable if there exists an orthondsea
of vectorsuy, . .. vg € R?, and positive scalarg,, ... \y > 0 such thatl’ = Zle Ai(v; @ v; ;).

Unlike matrices, most symmetric tensors are not orthodgriEcomposable. However, as shown
by [1,12,[15], several problems of interest, notably Gausdture Models and Latent Dirichlet
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Figure 2: The tradeoff between explained variance and ctetipnal cost for 3, 5 and 10-
component sparse-PCA models applied to Human gene expmetata. The models are constrained
for max. sparsity of 5% (top) and 20% (bottom). Red circlesiastances of the Generalized Power
method|[10]; Blue squares represent the Givens coordingtienization procedure.

Allocation do give rise to third-order moments which aréhogonally decomposable in the limit of
infinite data. The goal of orthogonal tensor decompositimiven an orthogonally decomposable
tensor7, to find the orthogonal vector set, ...v; € R? and the scalar,, ... \y > 0. We show
that finding an orthogonal decomposition can be stated apt@miaation problem ove®,. For a

vectoru € RY let T'(u, u,u) = 3.° Topetiaupie. \We have:

a,b,c=1

Theorem 3. LetT € R%*4*d have an orthogonal decomposition as in Definifidn 1, and icters
the optimization problem

UeOqy

d
max f(U) = > T (u, ui, us), ()
=1

whereU = [ujus ... uq). The stable stationary points of the problem are exacthhagbnal
matricesU such thatu; = v, ;) for a permutationr on [d].

The proof is given in the supplemental material. Algorithiah be applied for solving the opti-
mization problenfib, with a one-time precomputatior(dfi*), and then a per-update computation
of O(d?) operations. The state-of-the art method, the robust tepseer method, requires com-
puting several tensor power iterations for finding eacharecdmponent;,i = 1...d. Each such
power iteration require®(d*) operations.

Experiments

We focus on the task of fitting a Gaussian Mixture Model (GMM)hacommon spherical covari-
ance by the tensor decomposition method [2, 1]. We evalba&té&ivens coordinate minimization
algorithm using this task and compare with the robust tepsarer method, as given in/[1]. We
generated 20-component GMMs with dimensions ranging fr@20d0, and number of samples
from 10,000 - 200,000. From the samples we constructed tteedhder moment, decomposed it,
and reconstructed the GMM following the procedure outliiredll]. We then clustered the sam-
ples according to the reconstructed model, and measurewth@lized mutual information (NMI)

between the learned clustering and the true clusters.

Figure[3 (a) and (b) compares the performance of the two rdethdgth the optimal NMI across
dimensions. The coordinate minimization method outpemfothe tensor power method for the
large sample size (200K), whereas for small sample size \f¥tensor power method performs
better for the intermediate dimensions. Figlte 3 (c) shdwesperformance of both algorithms
across all sample sizes for dimensieri00. We see that the coordinate minimization method again
performs better for larger sample sizes. We observed tldagienon for 50 components as well.
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Figure 3: Clustering performance of Givens coordinate ritlgm vs. the tensor power method of
Anandkumar et al.|[1]. Clustering by fitting a GMM from sampl@rawn from a 20-component
GMM using 3rd order moments. The reconstruction is from (8 $amples and (b) 200K samples
with varying dimensions, and (c) varying sample sizes withahsion= 100 (note the different
y-scale here). Blue line with circles marks the Givens comatd minimization method. Red line
with triangles marks the tensor power methad [1], and thelblime is the optimal performance if
all the GMM parameters are known.
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