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Abstract

Optimizing over the set of orthogonal matrices is a central component in prob-
lems like sparse-PCA or tensor decomposition. Unfortunately, such optimization
is hard since simple operations on orthogonal matrices easily break orthogonality,
and correcting orthogonality usually costs a large amount of computation. Here
we propose a framework for optimizing orthogonal matrices,that is the parallel
of coordinate-descent in Euclidean spaces. It is based onGivens-rotations, a fast-
to-compute operation that affects a small number of entriesin the learned matrix,
and preserves orthogonality. We show two applications of this approach: an al-
gorithm for tensor decomposition that is used in learning mixture models, and an
algorithm for sparse-PCA. We study the parameter regime where a Givens rota-
tion approach converges faster and achieves a superior model on a genome-wide
brain-wide mRNA expression dataset.

1 Introduction

Optimization over orthogonal matrices – matrices whose rows and columns form an orthonormal
basis ofRd – is central to many machine learning optimization problems. Prominent examples
includePrincipal Component Analysis(PCA), Sparse PCA, andIndependent Component Analysis
(ICA). In addition, many new applications of tensor orthogonal decompositions were introduced
recently, including Gaussian Mixture Models, Multi-view Models and Latent Dirichlet Allocation
(e.g., [1, 2]).

A major challenge when optimizing over the set of orthogonalmatrices is that simple updates such as
matrix addition usually break orthonormality. Correctingby orthonormalizing a matrixV ∈ R

d×d

is typically a costly procedure: even a change to a single element of the matrix, may requireO(d3)
operations in the general case for re-orthogonalization. In this paper, we present a new approach
for optimization over the manifold of orthogonal matrices,that is based on a series of sparse and
efficient-to-compute updates that operatewithin the set of orthonormal matrices, thus saving the
need for costly orthonormalization. The approach can be seen as the equivalent of coordinate descent
in the manifold of orthonormal matrices. Coordinate descent methods are particularly relevant for
problems that are too big to fit in memory, for problems where one might be satisfied with a partial
answer, or in problems where not all the data is available at one time [3].

We start by showing that the orthogonal-matrix equivalent of a single coordinate update is applying
a singleGivens rotationto the matrix. In section 3 we prove that for a differentiableobjective the
procedure converges to a local optimum under minimal conditions, and prove anO(1/T ) conver-
gence rate for the norm of the gradient. Sections 4.1 and 4.2 describe two applications: (1) sparse
PCA, including a variant for streaming data; (2) a new methodfor orthogonal tensor decomposition.
We study how the performance of the method depends on the problems hyperparameters using syn-
thetic data, and demonstrate that it achieves superior accuracy on an application of sparse-PCA for
analyzing gene expression data.
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2 Coordinate descent on the orthogonal matrix manifold

Coordinate descent (CD) is an efficient alternative to gradient descent when the cost of computing
and applying a gradient step at a single coordinate is small relative to computing the full gradient. In
these cases, convergence can be achieved with a smaller number of computing operations, although
using a larger number of (faster) steps. Applying coordinate descent to optimize a function involves
choosing a coordinate basis, usually the standard basis. Then calculating a directional derivative in
the direction of one of the coordinates. And finally, updating the iterate in the direction of the chosen
coordinate.

To generalize CD to operate over the set of orthogonal matrices, we need to generalize these ideas of
directional derivatives and updating the orthogonal matrix in a “straight direction”. In the remaining
of this section, we introduce the set of orthogonal matrices, Od, as a Riemannian manifold. We
then show that applying coordinate descent to the Riemannian gradient amounts to multiplying by
Givens rotations. Throughout this section and the next, theobjective function is assumed to be a
differentiable functionf : Od → R.

2.1 The orthogonal manifold and Riemannian gradient

The orthogonal matrix manifoldOd is the set ofd× d matricesU such thatUUT = UTU = Id. It
is a d(d−1)

2 dimensional smooth manifold, and is an embedded submanifold of the Euclidean space

Rd×d [4]. Each pointU ∈ Od has a tangent space associated with it, ad(d−1)
2 dimensional vector

space, that we will use below in order to capture the notion of“direction” on the manifold. The
tangent space is denotedTUOd, and defined byTUOd = {Z ∈ R

d×d, Z = UΩ : Ω = −ΩT } =
USkew(d), whereSkew(d) is the set of skew-symmetricd× d matrices.

The natural generalization of straight lines to manifolds are geodesic curves. A geodesic curve is
the shortest curve between two points on the manifold, or equivalently, a curve with no acceleration
tangent to the manifold [4]. For a pointU ∈ Od and a “direction”UΩ ∈ TUOd there exists a
single geodesic line that passes throughU in directionΩ. Fortunately, while computing a geodesic
curve in the general case might be hard, computing it for the orthogonal matrix manifold has a
closed form expression:γ : (−1, 1) → Od, γ(θ) = UExpm(θΩ), whereγ(θ) with θ ∈ (−1, 1) is
the parameterization of the curve, and Expm is the matrix exponential function. In the special case
where the operatorExpm(Ω) is applied to a skew-symmetric matrixΩ, it mapsΩ into an orthogonal
matrix 1. As a result,γ(θ) = UExpm(θΩ) is also an orthogonal matrix for all−1 < θ < 1. This
provides a useful parametrization for orthogonal matrices.

In analogy to the Euclidean case, the Riemannian directional derivative off in the direction of a
vectorUΩ ∈ TUOd is defined as the derivative of a single variable function which involves looking
atf along a curve [4]:

∇Ωf(U) ≡
d
dθ

f(γ(θ))
∣

∣

∣

θ=0
=

d
dθ

f(UExpm(θΩ))
∣

∣

∣

θ=0
. (1)

Note that∇Ωf(U) is a scalar. The definition means that the directional derivative is the limit off
along the geodesic curve going throughU in the directionUΩ. Since the Riemannian equivalent of
walking in a straight line is walking along the geodesic curve, taking a step of sizeη > 0 from a
pointU ∈ Od in directionUΩ ∈ TUOd amounts to:

Unext = UExpm(ηΩ) . (2)

We also have to define the orthogonal basis forSkew(d). Here we use{eieTj − eje
T
i : 1 ≤ i < j ≤

d}. We denote each basis vector asHij = eie
T
j − eje

T
i , 1 ≤ i < j ≤ d.

2.2 Givens rotations as coordinate descent

Coordinate descent is a popular method of optimization in Euclidean spaces. It can to be more effi-
cient than computing full gradient steps when it is possibleto (1) compute efficiently the coordinate
directional derivative, and (2) apply the update efficiently. We will now show that in the case of the
orthogonal manifold, applying the update (step 2) can be achieved efficiently. The cost of computing
the coordinate derivative (step 1) depends on the specific nature of the objective functionf , and we
we show below several cases where that can be achieved efficiently.

1Because Expm(Ω)Expm(Ω)T = Expm(Ω)Expm(ΩT ) = Expm(Ω)Expm(−Ω) = I
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Let Hij be a coordinate direction, let∇Hij
f(U) be the corresponding directional derivative, and

choose step sizeη > 0. A straightforward calculation based on Eq. 2 shows that theupdate
Unext = UExpm(−ηHij) obeys

Expm(−ηHij) =
























1 · · · 0 · · · 0 · · · 0
...

.. .
...

...
...

0 · · · cos(η) · · · −sin(η) · · · 0
...

...
. . .

...
...

0 · · · sin(η) · · · cos(η) · · · 0
...

...
...

. . .
...

0 · · · 0 · · · 0 · · · 1

























This matrix is known as aGivens rotation[5] and is denotedG(i, j,−η). It hascos(η) at the(i, i)
and(j, j) entries, and±sin(η) at the(j, i) and(i, j) entries. It is a simple and sparse orthogonal
matrix, with a fast implementation in low-level linear algebra subroutines like BLAS. For a dense
matrix A ∈ R

d×d, the linear operationA 7→ AG(i, j, η) rotates theith andjth columns ofA by
an angleη in plane they span. Computing this operation costs6d multiplications and additions.
As a result, computing Givens rotations successively for all d(d−1)

2 coordinatesHij takesO(d3)
operations, the same order as ordinary matrix multiplication. Therefore the relation between the
cost of a single Givens relative to a full gradient update is the same as the relation between the cost
of a single coordinate update and a full update is in Euclidean space. We note that any determinant-1
orthogonal matrix can be decomposed into at mostd(d−1)

2 Givens rotations.

2.3 Coordinate minimization algorithm with Givens rotations

Based on the definition of Givens rotation, a natural algorithm for optimizing over orthogonal ma-
trices is to perform a sequence of rotations, where each rotation is equivalent to a coordinate-step in
CD. To fully specify the algorithm we need two more ingredients: (1) Selecting a schedule for going
over the coordinates and (2) Selecting a step size. For scheduling, we chose here to use a random
order of coordinates, following many recent coordinate descent papers [3, 6, 7]. For choosing the
step sizeη we use exact minimization, since we found that for the problems we attempted to solve,
using exact minimization was usually the same order of complexity as performing approximate min-
imization (like using an Armijo step rule [8, 4]). Based on these two decisions, Algorithm (1) is a
random coordinate minimization technique.

Algorithm 1 Riemannian coordinate minimization onOd

Input: Differentiable objective functionf , initial matrixU0 ∈ Od

t = 0
while not convergeddo

1. Sample uniformly at random a pair(i(t), j(t)) such that1 ≤ i(t) < j(t) ≤ d.
2. θt+1 = argmin

θ

f (Ut ·G(i, j, θ)).

3. Ut+1 = Ut ·G(i, j, θt+1).
4. t = t+ 1.

end while
Output: Ufinal.

3 Convergence rate for Givens coordinate minimization
Assume that the objective functionf is differentiable.We show that Algorithm 1 converges to critical
point of the functionf , and the only stable convergence points are local minima. Wefurther show
that the expectation w.r.t. the random choice of coordinates of the squaredl2-norm of the Rieman-
nian gradient converges to0 with a rate ofO( 1

T
) whereT is the number of iterations. The proofs,

including some auxiliary lemmas, are provided in the supplemental material. Overall we provide
the same convergence guarantees as provided in standard non-convex optimization (e.g., [9, 8]). As
in the Euclidean case, stronger assumptions, such as manifold-convexity off , could yield stronger
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results. However, we have so far not found an interesting case of an objective function which is
manifold-convex on the orthogonal manifold.

Theorem 1. Convergence to local optimum
(1) The sequence of iteratesUt of Algorithm (1) satisfies:limt→∞ ||∇f(Ut)|| = 0. This means that
the accumulation points of the sequence{Ut}

∞
t=1 are critical points off .

(2) Assume the critical points off are isolated. LetU∗ be a critical point off . ThenU∗ is a local
minimum off if and only if it is asymptotically stable with regard to the sequence generated by
Algorithm (1).

Theorem 2. Rate of convergence
LetUt be the sequence generated by Algorithm (1), andL be a universal Lipschitz constant forf ,
which always exists by compactness ofOd and differentiability off . For the sequence of Riemannian
gradients∇f(Ut) ∈ TUt

Od we have:

max
0≤t≤T

E
[

||∇f(Ut)||
2
2

]

≤
L · d2 (f(U0)− fmin)

T + 1
. (3)

The proof is a Riemannian version of the proof for the rate of convergence of Euclidean random
coordinate descent for non-convex functions [7] and is provided as supplemental material.

4 Results

We applied Givens coordinate minimization to two problems:Sparse PCA (SPCA) and orthogonal
tensor decomposition, and compare its performance with state of the art methods - the generalized
power method for SPCA [10] and the tensor power method [1] fortensor decomposition. For SPCA
we find our method finds sparser solutions faster than the competition. For tensor decomposition we
find that our method finds better solutions than the competition, though not necessarily faster.

4.1 Sparse PCA

Principal component analysis (PCA) is a basic dimensionality reducing technique used throughout
the sciences. One drawback of ordinary PCA is lack of interpretability. In the data matrixA ∈ R

d×n,
each dimension usually has an understandable meaning, suchas the level of expression of a certain
gene. The dimensions of the PCA transformed matrix however are typically linear combinations of
all gene expression levels, and as such are much more difficult to interpret. A common approach to
finding interpretableprincipal components is Sparse PCA [11, 10]. SPCA aims to findm loading
vectorszi ∈ R

d as in PCA, which are also sparse. In the gene-expression example, the non-zero
components ofzi might correspond to a few genes that explain well the structure of the dataA.

One of the most popular approaches for solving the problem offinding sparse principal components
is the work by Jourńee et al. [10]. They show how to solve the SPCA problem by transforming it to
a problem of finding a certain matrix with orthogonal columns:
argmax

∑m

j=1

∑d

i=1[|(A · U)ij | − γ]2+, s.t. U ∈ R
n×m, UTU = Im, wheren is the number of

samples,d is the input dimensionality andm is the number of PCA components computed. This
objective is once-differentiable and the objective matrixU grows with the number of samplesn.

If we set number of componentsm to be equal to the number of samplesn we have that the objective
matrixU is an orthogonal matrix, and can apply Algorithm ((1)) directly to solve the optimization
problem above. At each roundt, for choice of coordinates(i, j) and a matrixUt ∈ Od, the resulting
coordinate minimization problem is:

argmin
θ

−

d
∑

k=1

[|cos(θ)(AUt)ki + sin(θ)(AUt)kj | − γ]2+

+ [| − sin(θ)(AUt)ki + cos(θ)(AUt)kj | − γ]2+.

(4)

In practice, there is no need to store the matricesUt in memory, and one can work directly with the
matrixAUt. Evaluating the above expression for a givenθ requiresO(d) operations. We found in
practice that optimizing required an order of 5-10 evaluations.

In most cases researchers are interested to obtain only a small number of components, and so usu-
ally the number of components ism << n. We therefore developed a streaming version of our
procedure. For a small givenm, we treat the data as if onlym samples exist at any time, giving an
intermediate modelAU ∈ R

d×m. After a few rounds of optimizing over this subset of samples, we
use a heuristic to drop one of the previous samples and incorporate a new sample. This gives us a
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(a) explained variance (b) number of non-zeros

Figure 1: (a) The explained variance and (b) The number of non-zeros as function of FLOPS of the
coordinate minimization method and of the generalized power method be [10], on a prostate cancer
gene expression dataset. The size of the sparse PCA matrix is12, 600× 102.

streaming version of the algorithm because in every phase weneed onlym samples of the data in
memory. The full details of the algorithm are given in the supplemental material.

Experiments
We first examine the case wherem = n. We used the prostate cancer gene expression data by Singh
et al. [12]. This dataset consists 102 samples over 12,600 genes. We compared the performance
of our approach with that of theGeneralized Power Method[10]. As can be seen in Figure 1, the
Givens coordinate minimization method find a sparser solution with better explained variance, and
does so faster than the generalized power method.

We tested the streaming version of the coordinate minimization algorithm for SPCA on a recent
large gene expression data set collected from of human brains [13], measuring the expression of
20,000 genes across 3000 locations. Sparse PCA attempts to trade-off two variables: the fraction
of data variance that is explained by the model’s components, and the level of sparsity of the com-
ponents. In our experiment, we monitor a third important parameter, the number of floating point
operations (FLOPS) performed to achieve a certain solution. We again compared the performance
of our approach with that of theGeneralized Power Method[10]. We split the data into a train and
test and evaluated the amount of residual variance explained by the model on the test set.

We used a range ofγ values and stopping criteria for both algorithms. Each condition gives rise to
a different tradeoff between sparsity, variance explained, and number of FLOPS. Figure 2 demon-
strates the tradeoff between floating point operations and explained variance for sparse PCA with 3,
5 and 10 components and with sparsity levels of 5%, and 20%. Each dot represents one instance of
the algorithm that was run with a certain value ofγ and stopping criterion. To avoid clutter we only
show instances which performed best in terms of explained variance or few FLOPS. When strong
sparsity is required (5% or 10% sparsity), the Givens-rotation coordinate descent algorithm finds
solutions faster (blue rectangles are more to the left in Figure 2), and these solutions are similar or
better in terms of explained variance. For low-dimensionalless sparse solutions (20% sparsity) we
find that the generalized power method finds comparable or better solutions using the same compu-
tational cost, but only when the number of components is small, as seen in Figure 2.b,d,f.

4.2 Orthogonal tensor decomposition

Recently it has been shown that many classic machine learning problem such as Gaussian Mix-
ture Models and Latent Dirichlet Allocation can be solved efficiently using 3rd order moments
[1, 2, 14]. These methods ultimately rely on finding an orthogonal decomposition of 3-way tensors
T ∈ R

d×d×d, and reconstructing the solution from the decomposition. The problem of finding an
orthogonal decomposition for a tensorT ∈ R

d×d×d can be naturally cast as a problem of optimiza-
tion over the orthogonal matrix manifold. We apply Algorithm (1) to this problem, and compare its
performance on a task of finding a Gaussian Mixture Model witha state-of-the-art tensor decomposi-
tion method, the robust Tensor Power Method [1]. We find that the Givens coordinate minimization
method consistently finds better solutions when the number of mixture components is large.

Definition 1. A symmetric tensorT is orthogonally decomposable if there exists an orthonormal set
of vectorsv1, . . . vd ∈ R

d, and positive scalarsλ1, . . . λd > 0 such thatT =
∑d

i=1 λi(vi ⊗ vi ⊗ vi).

Unlike matrices, most symmetric tensors are not orthogonally decomposable. However, as shown
by [1, 2, 15], several problems of interest, notably Gaussian Mixture Models and Latent Dirichlet
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(b) max. sparsity 20% (d) max. sparsity 20% (f) max. sparsity20%
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3 components 5 components 10 components

Figure 2: The tradeoff between explained variance and computational cost for 3, 5 and 10-
component sparse-PCA models applied to Human gene expression data. The models are constrained
for max. sparsity of 5% (top) and 20% (bottom). Red circles are instances of the Generalized Power
method [10]; Blue squares represent the Givens coordinate minimization procedure.

Allocation do give rise to third-order moments which are orthogonally decomposable in the limit of
infinite data. The goal of orthogonal tensor decomposition is, given an orthogonally decomposable
tensorT , to find the orthogonal vector setv1, . . . vd ∈ R

d and the scalarsλ1, . . . λd > 0. We show
that finding an orthogonal decomposition can be stated as an optimization problem overOd. For a
vectoru ∈ R

d let T (u, u, u) =
∑d

a,b,c=1 Tabcuaubuc. We have:

Theorem 3. Let T ∈ Rd×d×d have an orthogonal decomposition as in Definition 1, and consider
the optimization problem

max
U∈Od

f(U) =

d
∑

i=1

T (ui, ui, ui), (5)

whereU = [u1 u2 . . . ud]. The stable stationary points of the problem are exactly orthogonal
matricesU such thatui = vπ(i) for a permutationπ on [d].

The proof is given in the supplemental material. Algorithm 1can be applied for solving the opti-
mization problem 5, with a one-time precomputation ofO(d4), and then a per-update computation
of O(d2) operations. The state-of-the art method, the robust tensorpower method, requires com-
puting several tensor power iterations for finding each vector componentvi, i = 1 . . . d. Each such
power iteration requiresO(d3) operations.

Experiments

We focus on the task of fitting a Gaussian Mixture Model (GMM) with common spherical covari-
ance by the tensor decomposition method [2, 1]. We evaluate the Givens coordinate minimization
algorithm using this task and compare with the robust tensorpower method, as given in [1]. We
generated 20-component GMMs with dimensions ranging from 10-200, and number of samples
from 10,000 - 200,000. From the samples we constructed the third order moment, decomposed it,
and reconstructed the GMM following the procedure outlinedin [1]. We then clustered the sam-
ples according to the reconstructed model, and measured thenormalized mutual information (NMI)
between the learned clustering and the true clusters.

Figure 3 (a) and (b) compares the performance of the two methods with the optimal NMI across
dimensions. The coordinate minimization method outperforms the tensor power method for the
large sample size (200K), whereas for small sample size (10K) the tensor power method performs
better for the intermediate dimensions. Figure 3 (c) shows the performance of both algorithms
across all sample sizes for dimension= 100. We see that the coordinate minimization method again
performs better for larger sample sizes. We observed this phenomenon for 50 components as well.
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Figure 3: Clustering performance of Givens coordinate algorithm vs. the tensor power method of
Anandkumar et al. [1]. Clustering by fitting a GMM from samples drawn from a 20-component
GMM using 3rd order moments. The reconstruction is from (a) 10K samples and (b) 200K samples
with varying dimensions, and (c) varying sample sizes with dimension= 100 (note the different
y-scale here). Blue line with circles marks the Givens coordinate minimization method. Red line
with triangles marks the tensor power method [1], and the black line is the optimal performance if
all the GMM parameters are known.
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