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Tübingen, Germany

seldin@tuebingen.mpg.de

Naftali Tishby†‡
†School of Computer Science and Engineering
‡Interdisciplinary Center for Neural Computation

The Hebrew University of Jerusalem, Israel
tishby@cs.huji.ac.il

Abstract

Clustering is a widely used tool for exploratory data analysis. However, the
theoretical understanding of clustering is very limited. We still do not have a
well-founded answer to the seemingly simple question of “how many clusters are
present in the data?”, and furthermore a formal comparison of clusterings based
on different optimization objectives is far beyond our abilities. The lack of good
theoretical support gives rise to multiple heuristics that confuse the practitioners
and stall development of the field.
We suggest that the ill-posed nature of clustering problems is caused by the fact
that clustering is often taken out of its subsequent application context. We argue
that one does not cluster the data just for the sake of clustering it, but rather to
facilitate the solution of some higher level task. By evaluation of the clustering’s
contribution to the solution of the higher level task it is possible to compare dif-
ferent clusterings, even those obtained by different optimization objectives. In the
preceding work it was shown that such an approach can be applied to evaluation
and design of co-clustering solutions. Here we suggest that this approach can be
extended to other settings, where clustering is applied.

1 Introduction

From early childhood we learn to group and partition (cluster) objects based on different parameters:
cubes by their color or shape, animals as domestic and wild, or as mammals and birds, and so on.
These types of questions are prominent throughout our lives and we have developed fairly good
skills and intuition as to how to approach them. But once we want to address them automatically we
have to transform our intuition into rigorous mathematical formulations. At the very least we should
be able to compare different solutions to the clustering problem and determine which is better. But
how can we compare clustering of cubes by color with clustering of cubes by shape? At a first
glance it appears to be a comparison of apples and oranges. However, we argue that it is possible to
do such comparison and that the answer depends on the goal and subsequent usage of the clustering.
Namely, we should ask: what is the purpose of clustering the cubes? If we would like to pack the
cubes into a toy-car, it is probably better to cluster the cubes by shape, as this task is indifferent to
color. But if we plan to make some other use of the cubes, wherein color is important, clustering by
color is probably a better choice.

2 Related Work

The idea of considering clustering in the context of a higher level task was inspired by the Infor-
mation Bottleneck (IB) principle [19, 17, 18]. The IB principle considers the problem of extracting
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information from a random variable X that is relevant for the prediction of a random variable Y .
The relevance variable Y defines the high level task. The extraction of relevant information from
X is done by means of clustering of X into clusters X̃ [19]. In other words, IB is looking for the
structure X̃ of X that is relevant for the prediction of Y . The IB principle was further extended
to graphical models in [18]. In the example with the cubes we can define X1, .., Xd to be various
parameters of the cubes, where d is the number of the parameters considered for each cube. For
example, X1 can be the shape of the cube, X2 cube’s color, X3 weight, etc. The relevance variable
Y may be an indicator variable as to whether the cube fits into a certain volume or a real-valued
variable, for example the coefficient of light energy absorption. Clearly, each relevance variable
corresponds to a different partition (clustering) of the parameter space. It is important to note that
the requirement to compress X is an important part of the high level task in IB. In [13, 12] it has
been proved that if the high level task is solely the prediction of Y and d = 1, direct smoothing of
the empirical conditional distributions yields better performance than clustering-based solutions.

The idea to consider clustering as a proxy to a solution of a prediction task was further developed
in [8, 7]. In these works Krupka and Tishby analyze a scenario wherein each object has multiple
properties, but only a fraction of the properties is observed. Consider the following illustration:
assume we are presented with multiple fruits and we observe their parameters, such as size, color,
and weight. We can cluster the fruits by their observed parameters in order to facilitate prediction
of unobserved parameters, such as taste and toxicity. This approach enables to conduct a formal
analysis and derive generalization bounds for prediction rules based on clustering.

In recent years extensive attempts have been made to address the question of model order selection
in clustering in terms of its stability [9, 21, 15, 3]. This perspective suggests that for two random
samples generated by the same source clustering of the samples should be similar (and hence stable).
Otherwise the obtained clustering is unreliable. Although it has been proved that in a large sample
regime stability can be used for model order selection [15], no upper bounds on the minimal sample
size required for stability estimates to hold can be proved. Furthermore, in certain cases stability
indices based on arbitrarily large samples can be misleading [3]. Since in any practical application
the amount of data available is limited, currently existing stability indices cannot be used for reliable
model order selection. Moreover it is not clear whether the stability indices can be used to compare
solutions based on different optimization objectives.

Gaussian ring example. We use the following example from [12] to illustrate that generalization
and stability criteria for evaluation of clustering are not equivalent. Assume points in R2 are gen-
erated according to the following process. First, we select a center µ of a Gaussian according to a
uniform distribution on a unit circle in R2. Then we generate a point x ∼ N (µ, σ2I) according
to a Gaussian distribution centered at µ with a covariance matrix σ2I for a fixed σ (I is a 2 by 2
identity matrix). Given a sample generated according to the above process we can apply a mixture
of Gaussians clustering in order to learn the generating distribution. Note that:

1. Due to the symmetry in the generating process, the solution will always be unstable (the centers
of Gaussians in the mixture of Gaussians model can move arbitrarily along the unit circle).

2. By increasing the sample size and the number of Gaussians in the mixture of Gaussians model
we can approximate the true data generating process arbitrarily well.

Hence, models with good generalization properties are not necessarily stable. This point should be
kept in mind when using generalization as an evaluation criterion in clustering.

3 PAC-Bayesian Analysis of Co-clustering

In [13, 14, 12] it was shown that PAC-Bayesian bounds provide a handful tool for analysis of gen-
eralization in co-clustering. We will briefly review these results and in the next section suggest that
they can likely be extended to other settings, wherein clustering is applied. Co-clustering is a widely
used method for analysis of matrix data by simultaneous clustering of rows and columns of the ma-
trix [2]. It has successfully been applied in multiple domains, including clustering of documents
and words in text mining [6], genes and experimental conditions in bioinformatics [4], viewers and
movies in recommender systems [12], etc. In [14] it is pointed out that there are actually two dif-
ferent types of tasks that are solved with co-clustering. The first one is discriminative prediction,
which corresponds to tasks like collaborative filtering, where we want to predict the rating given a
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〈viewer, movie〉 pair. This task can be considered as a supervised classification task solved via clus-
tering, because the rating can be considered as a label of the 〈viewer, movie〉 pair. The second task
is estimation of a joint probability distribution of two variables and it corresponds to tasks such as
the analysis of word-document co-occurrence matrices. This task is a purely unsupervised learning
task.

PAC-Bayesian bounds [11, 10, 1] are a handful framework for generalization analysis in heteroge-
neous hypothesis spaces. For a hypothesis class H the heterogeneity is introduced via a prior P(h)
over h ∈ H, which has to be selected before we observe the sample. The prior P(h) determines
which hypotheses are considered simple and which are more complex. In many cases there is a nat-
ural heterogeneity present in the hypothesis class which can be exploited to construct the prior. For
example, the class of decision trees can be divided into subclasses corresponding to tree depth and a
preference to shallow trees can be given this way. The PAC-Bayesian bounds consider randomized
predictors. For a posterior distribution Q over H that can be selected after observing the sample,
the randomized predictor associated with Q acts by selecting a hypothesis h ∈ H according to Q
and then applying h to make the prediction. Let L(h) to be the expected loss of a hypothesis h, let
L(Q) = EQ(h)L(h) be the expected loss of the randomized prediction strategy Q, let L̂(Q) be its
empirical counterpart, and assume that the loss is bounded in the [0, 1] interval. The PAC-Bayesian
bounds state that with a probability greater than 1− δ over the sample selection for all randomized
prediction strategies Q simultaneously:

Db(L̂(Q)‖L(Q)) ≤
D(Q‖P) + 1

2 ln(4N)− ln δ

N
, (1)

where D(Q‖P) is the KL-divergence [5] between Q and P and Db(L̂(Q)‖L(Q)) is the KL-
divergence between two Bernoulli variables with biases L̂(Q) and L(Q). In [14, 12] this result
is further extended to a result of a similar form that applies to discrete density estimation.

In [13, 14, 12] PAC-Bayesian bounds were applied to derive generalization bounds for discrimina-
tive prediction and density estimation based on co-clustering. The bounds suggest that the expected
performance of such models is optimized through the optimization of a trade-off between empiri-
cal performance and the mutual information [5] that the cluster variables preserve on the rows and
columns of the data matrix. In addition to its theoretical importance, this result also has a prac-
tical value. By optimization of the trade-off in [12], state-of-the-art performance was achieved in
prediction of missing ratings in the MovieLens collaborative filtering dataset.

4 Discussion and Future Directions

The main message of this abstract is to suggest the external instead of internal evaluation of cluster-
ing. Namely, instead of evaluation of different properties of clustering itself we suggest to evaluate
the contribution of clustering to the solution of a more general task. The approach to external
evaluation of clustering that was illustrated on the co-clustering task in [13, 14, 12] can be ex-
tended to other clustering tasks. For example, we can evaluate clustering of points in Rd with
a Gaussian mixture model by its ability to predict new points generated by the same distribution
that generated the training set. It should be possible to apply the PAC-Bayesian framework to
analyze this formulation of clustering objective. In particular, if the posterior distribution Q is a
mixture distribution Q(h) =

∑
i λiQi(h) for

∑
i λi = 1, then by convexity of the KL-divergence

D(Q‖P) ≤
∑

i λiD(Qi‖P). Substitution of this result into (1) supports the intuition behind the
“Gaussian ring” example presented earlier: the generalization bound does not depend on the number
of Gaussians involved in the solution, but only on their weighted KL-divergence from a prior dis-
tribution. To complete the analysis it is required to extend the PAC-Bayesian bounds to continuous
loss functions, which is a subject for future work [12].

We further note that clustering is a particular case of structure learning. Hence, we can extend the
approach of external evaluation of clustering to evaluation of structure learning (and in particular
graphical models) by its contribution to a solution of a more general task. The suggested framework
does not limit the high level task to a prediction task. It is possible to analyze the advantages of
structure-based models in other contexts. For example:

1. Cases where we are not limited to a single prediction question, but rather a range of questions
coming from a predefined family [16].
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2. Tasks of control. For example, it may be easier to control or influence a process (e.g., our own
hand or some tool) if we have a simple representation of its structure.

Structure-based models can also be preferable when computation or memory constraints are im-
posed. Moreover, it is not a-priori clear in questions of prediction whether structure-based ap-
proaches can outperform unstructured approaches, such as SVMs. Vapnik’s well-known postulate
states that “one should not solve a harder problem on the way to solving a simpler problem” [20].
Structure learning is an extra effort that is not justified in the context of a pure prediction task. How-
ever, we know that as humans we perceive the world around us in a structured manner. Thus there
must be advantages that we gain from the knowledge of structure. The most distinctive advantage
of structure-based models is the understanding and simplification of the underlying processes and
phenomenons. But in order to build computational models that are able to understand the data it is
essential to quantify the notion of understanding or at least to be able to compare the level of under-
standing gained by different approaches (similar to the way we can measure which of two students
understood a course better). We conjecture that quantification of understanding should be done in
the context of its potential applications. For example, one student can understand the course better
to pass a written exam, but his schoolmate will outperform him in an oral exam because it examines
another type of understanding. Thus, the analysis of structure learning in the context of prediction
tasks is just a small step towards the quantification of knowledge and development of algorithms
that are able to understand the data.
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