1. (10 points) Prove that the MAX-CUT problem can be solved in polynomial time, on
trees.

2. (15 points) A *kettle* graph on $2n$ nodes is a clique on n nodes, with two arbitrary
identified nodes a and b. Separate from the clique, there is a path of length $n + 2$
between a and b. The two ends of the path are a and b and there are n nodes which
are not part of the clique on the path.

 (a) (5 points) Show that a kettle graph on $2n$ nodes has cover time $O(n^3)$.
 (b) (10 points) Show that a kettle graph on $2n$ nodes has cover time $\Omega(n^3)$.

3. (15 points) A minimum bottleneck spanning tree (MBST) in an undirected connected
weighted graph is a spanning tree in which the most expensive edge is as cheap as
possible. Prove that a Minimum Spanning Tree (MST) is necessarily an MBST, and
that an MBST is not necessarily a MST.

4. (15 points) A *maximum* matching in a graph G is a matching of largest size. A *maxi-
mal* match is a matching where the addition of any other edge violates the matching
constraint. A maximal matching does not need to be a maximum matching. However,
a maximum matching is indeed a maximal matching.

 Prove that if G is a graph with a maximum matching of size $2k$, the smallest maximal
matching it could contain is of size k.