_

Streaming items through a
cluster with Spark Streaming

Tathagata “TD” Das
W @tathadas

CME 323: Distributed Algorithms and Optimization
Stanford, May 6, 2015

€databricks SparK

Who am [?

> Project Management Committee (PMC) member
of Apache Spark

> |_ead developer of Spark Streaming

> Formerly in AMPLab, UC Berkeley
> Software developer at Databricks

> Databricks was started by creators of Spark to
provide Spark-as-a-service in the cloud

gdatabricks SparK

Big Data

gdatabricks Spark

Big Streaming Data

gdatabricks Spor‘llg

Why process Big Streaming Data”

Fraud detection in bank transactions

Cat videos in tweets

vy vy

€databricks Spqu(

How to Process Big Streaming Data

é) () ()

Ingest O Process O Store
W 3 y> data data results
i ot A
G ’ ’ y, a &' \&" &*")

Raw Tweets ,
11

> |ngest — Receive and buffer the streaming data
> Process — Clean, extract, transform the data

> Store — Store transformed data for consumption

gdatabricks Spqr‘llg

How to Process Big Streaming Data

() () ()

Ingest Process Store
Yy ¥ 3 data O O results

Raw Tweets

> For big streams, every step requires a cluster

> Every step requires a system that is designed for it

gdatabricks Spor‘l'g

Stream Ingestion Systems

Ingest

W N Y data

Raw Tweets

> Kafka — popular distributed pulb-sub system

> Kinesis — Amazon managed distributed pub-sub

> Flume — like a distributed data pipe

gdatabricks Spqr‘llg

Stream Ingestion Systems

¥ ¥ ¥

Raw Tweets

> Storm — most widely deployed (as of now ;))

> Samza — gaining popularity in certain scenarios

€databricks

-

_Spark

Process
data

<<

Streaming

\

~

5 STORM 'samza

> Spark Streaming — most demanded

Spark

<<

Stream Ingestion Systems

>

>

>

gdatabricks SparK

4)

Store
w 8N Y results
Raw Tweets — ‘—/

CE Hehse

cassandra

-ille systems — HDFS, Amazon S3, etc.

Key-value stores — HBase, Cassandra, etc.

Databases — MongoDB, MemSQL, etc.

§g kafka

€databricks SparK

§‘8 kafka Producers and Consumers

Topic X

Producer 1 Consumer
(tODICﬁB‘H\)) 7 7 (topicX, datal)

opicY, data2 (topicX, data1)

' ’
e)
Producer 2 Kafka Cluster Topic Y

Consumer

> Producers publish data tagged by “topic”
> Consumers subscribe to data of a particular “topic”

gdatabricks Spqr‘llg

§8 kafka Topics and Partitions

> Topic = category of message, divided into partitions
> Partition = ordered, numbered stream of messages

> Producer decides which (topic, partition) to put each
message in

Anatomy of a Topic

Partition 11111

0 0(1]12|13(4|5|6(7|8]|9 ol1l2! \
- _l
Partition ' - / Writes

1 0(1]12]|3|4|5(6(7(8]9,

Partition 1111,
2 01112|13|4|5|6|7|8(9 ol1l2!
- _‘

7S

€databricks ol > Mew Spa

§8 kafka Topics and Partitions

> Topic = category of message, divided into partitions
> Partition = ordered, numbered stream of messages

> Producer decides which (topic, partition) to put each
message in

> Consumer decides which (topic, partition) to pull
messages from

- High-level consumer — handles fault-recovery with
Z00Keeper

- Simple consumer — low-level API for greater control

gdatabricks Spor‘l?z

How to process Kafka messages?

() 4)

Ingest Process
¥y ¥ y> data O data
Raw Tweets ¥§ kafka’ MS’PC-T""‘(\Z /

Streaming

> |[ncoming tweets received in distributed manner
and buffered in Kafka

> How to process them??

gdatabricks SparK

Spar‘lgZ

Streaming

€databricks

What is Spark Streaming?

Scalable, fault-tolerant stream processing system

High-level API Fault-tolerant Integration
joins, windows, ... Exactly-once semantics, Integrate with MLlIib, SQL,
often 5x less code even for stateful ops DataFrames, GraphX

Kafka 4)
Flume ¢"Z File systems
HDFS Sp Qr K Databases
Kinesis : Stre aming Dashboards
Twitter _ _J

gdatabricks Spark

How does Spark Streaming work?

> Recelvers chop up data streams into batches of
few seconds

> Spark processing engine processes each batch
and pushes out the results to external data stores

SpQr‘I'(\Z Streaming

? 4 R
o) J\z
=
data streams> Q Spr K >
() dedad s
5 batches as - GG _/ | results as
RDDs RDDs

gdatabricks Spqr‘llg

Spark Programming Modéel

> Resilient distributed datasets (RDDs)

— Distributed, partitioned collection of objects

- Manipulated through parallel transformations
(map, filter, reduceByKey, ...)

- All transformations are lazy, execution forced by actions
(count, reduce, take, ...)

— Can be cached in memory across cluster

- Automatically rebuilt on failure

gdatabricks SparK

Spark Streaming Programming Model

> Discretized Stream (DStream)
- Represents a stream of data
- Implemented as a infinite sequence of RDDs

> DStreams AP very Simila(r to RDD AP
¢

- Functional APIs in #Scala <=>Java @ python

—

- Create input DStreams from Kafka, Flume, Kinesis, HDFS, ...
- Apply transformations

gdatabricks SparK

Example — Get hashtags from Twitter

val ssc = new StreamingContext(conf, Seconds(1))

StreamingContext is the starting Batch interval, by which
point of all streaming functionality streams will be chopped up

gdatabricks Spqr‘llg

Example — Get hashtags from Twitter

val ssc = new StreamingContext(conf, Seconds(1))

val tweets = TwitterUtils.createStream(ssc, auth)

S~
Input DStream

Twitter Streaming APl | batch@t| |batch@ts1 |batch @42 ﬁ

tweets DStream

replicated and stored in
memory as RDDs

gdatabricks Spor‘l?z

Example — Get hashtags from Twitter

val tweets = TwitterUtils.createStream(ssc, None)

val hashTags = tweets.flatMap(status => getTags(status))

transformed transformation: modify data in one
DStream DStream to create another DStream

tweets DStream

hashTags Dstream
[#cat, #dog, ...]

new RDDs created
for every batch

€databricks Spar

Example — Get hashtags from Twitter

val tweets = TwitterUtils.createStream(ssc, None)
val hashTags = tweets.flatMap(status => getTags(status))
hashTags.saveAsTextFiles("hdfs://...")

ﬁ output operation: to push data to external storage]

batch @ t batch @ t+1 batch @ t+2
tweets DStream

flatMap flatMap flatMap

hashTags DStream

save save save

\ @E« ’ every batch
saved to HDFS

gdatabricks Spor‘ll(?

@
é

Example — Get hashtags from Twitter

val tweets = TwitterUtils.createStream(ssc, None)
val hashTags = tweets.flatMap(status => getTags(status))
hashTags.foreachRDD(hashTagRDD => { ... })

ﬁforeachRDD: do whatever you want with the processed data]

batch @ t batch @ t+1 batch @ t+2
tweets DStream

flatMap flatMap flatMap
hashTags DStream

foreach foreach foreach

Werite to a database, update analytics
Ul, do whatever you want

gdatabricks Spor‘llg

Example — Get hashtags from Twitter

val tweets = TwitterUtils.createStream(ssc, None)
val hashTags = tweets.flatMap(status => getTags(status))
hashTags.foreachRDD(hashTagRDD => { ... })

all of this was just setup for what to do when
streaming data is receiver

ssc.start() — thisactually starts the receiving and processing]

gdatabricks Spor‘llg

What’s going on inside?

> Recelver buffers tweets
in Executors’ memory Spark Cluster

> Spark Streaming Driver
launches tasks to
process tweets

yvs>-

Raw Tweets \

launch tasks to
process tweets

river
running

DStreams

~

N

Buffered
Tweets

Buffered
Tweets

Twitter
Receiver

Executors

gdatabricks Spqr‘llg

What’s going on inside”?

D

receive data in

parallel

>

Kafka Cluster
I\
¥y Yy y
d
N
O © O
4
I\
)y)
4
€databricks

Spark Cluster

'
1
==

: launch tasks to
process data

river
running

DStreams

Receiver

Receiver

3
CTE
=5

;

H—ty
I
—H-

Receiver

Spa

7S

Performance

Can process 60M records/sec (6 GB/sec) on
100 nodes at sub-second latency

— 7/ _35
Q Grep / Q WordCount
2 2| & a
"é_ 5 // 525 /
- 2 it
o 4 @ 2 /
o o
% 3 l_E 1.5 /
) 5 01
o =0-1 sec 2 / -1 sec
7, =
2 1 8- sec 5 0> v 8- sec
0 I 1 0 T]
0 50 100 0 50 100
Nodes in Cluster # Nodes in Cluster

gdatabricks Spor‘llg

Window-based Transformations

val tweets = TwitterUtils.createStream(ssc, auth)
val hashTags = tweets.flatMap(status => getTags(status))
val tagCounts = hashTags.window(Minutes(1l), Seconds(5)).countByValue()

[Sl'd'ngw'é\\/\/q window length | | sliding interval
operation | |

window length
A

= T ST
DStream of data H{J

sliding interval

€databricks Spar

Arbitrary Stateful Computations

Specify function to generate new state based on
previous state and new data

- Example: Maintain per-user mood as state, and update
it with their tweets

def updateMood(newTweets, lastMood) => newMood

val moods = tweetsByUser.updateStateByKey(updateMood)

gdatabricks SparK

Integrates with Spark Ecosystem

Spark
Streaming

Spark Core

Spark SQL

MLLib GraphX

gdatabricks Spor‘llg

Combine batch and streaming processing

> Join data streams with static data sets

// Create data set from Hadoop file
val dataset = sparkContext.hadoopFile(“file”

Spark

// Join each batch in stream with dataset [SEESSOME :
Streaming

MLlib GraphX

kafkaStream.transform { batchRDD =>

batchRDD. join(dataset)filter(...)
} Spark Core

gdatabricks Spor‘llg

Combine machine learning with streaming

> |earn models offline, apply them online

// Learn model offline

val model = KMeans.train(dataset, ...)

Spark

Spark SQL Streaming MLLlib GraphX

// Apply model online on stream

kafkaStream.map { event =>

model.predict(event.feature) Spark Core

}

gdatabricks Spoﬁg

Combine SQL with streaming

> Interactively query streaming data with SQL

// Register each batch in stream as table

kafkaStream.map { batchRDD => Spark

Streaming

Spark SQL

) MLlib GraphX
batchRDD.registerTempTable("latestEvents"”

Spark Core
// Interactively query table

sqlContext.sql("select * from latestEvents")

gdatabricks Spoﬁg

100+ known industry deployments

NETFLIX ‘@ produban .|||,|||.

"% CISCO.

X RelayHealth DRTASTAX.®

O in/\,tel kelkoo Y~ @FAMDATA
Asialnfo ‘

Vi rd ata () CLOUDPHYSICS

= stratio gUAVUS

viadedo

sharethrough °
PEARSON Pinterest

VELOCIDATA

Atigeo ..00vALA

gdatabricks Spqr‘llg

Why are they adopting Spark Streaming?

Easy, high-level API
Unified API across batch and streaming
Integration with Spark SQL and MLIib

Ease of operations

gdatabricks Spark’ 37

Neuroscience @ Freeman Lab, Janelia Farm

Spark Streaming and MLIiIb
to analyze neural activities i /m

Microscope Interactive visualiztion

\&‘\% Ioc.zl
I (\’/ server
Laser microscope scans e
Zebrafish brain=> Spark B ==
Streaming =2 interactive \
visualization =
. : Spark
laser ZAP to kill neurons! S

http://www.jeremyfreeman.net/share/talks/spark-summit-2014

gdatabricks SparK

Neuroscience @ Freeman Lab, Janelia Farm

Streaming machine learning
algorithms on time series
data of every neuron

Upto 2TB/hour and
Increasing with brain size

Upto 80 HPC nodes

http://www.jeremyfreeman.net/share/talks/spark-summit-2014/

€databricks .?pcn"lgZ

Streaming Machine Learning Algos

> Streaming Linear Regression

> Streaming Logistic Regression

> Streaming KMeans

http://www.jeremyfreeman.net/share/talks/spark-summit-east-2015/#/algorithms-repeat

€databricks Spa

Okay okay, how do | start off?

> Online Streaming

Programming Guide

http://spark.apache.org/docs/latest/streaming-programming-quide.html

> Streaming examples

https://github.com/apache/spark/tree/master/examples/src/main/scala/

org/apache/spark/examples/streaming

€databricks

Spo,%z e Overview Programming Guides ~ API Docs~ Deploying~

Spark Streaming Programming Guide

e Overview
¢ A Quick Example
« Basic Concepts

©O 0O 0o 0o 0o 00 0 O 0 ©

o

o

[}

[}

Linking

Initializing StreamingContext
Discretized Streams (DStreams)
Input DStreams and Receivers
Transformations on DStreams
Output Operations on DStreams
DataFrame and SQL Operations
MLIib Operations

Caching / Persistence
Checkpointing

Deploying Applications
Monitoring Applications

Performance Tuning

Reducing the Batch Processing Times
Setting the Right Batch Interval
Memory Tuning

Fault-tolerance Semantics
Migration Guide from 0.9.1 or below to 1.x
Where to Go from Here

Overview

Spark Streaming is an extension of the core Spark API that enables scalable, high-throughput
streams. Data can be ingested from many sources like Kafka, Flume, Twitter, ZeroMQ, Kinesit
algorithms expressed with high-level functions like map, reduce, join and window. Finally, proc
databases, and live dashboards. In fact, you can apply Spark’s machine learning and graph p

—rume) N Spark’

