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Who am [?

> Project Management Committee (PMC) member
of Apache Spark

> |_ead developer of Spark Streaming

> Formerly in AMPLab, UC Berkeley
> Software developer at Databricks

> Databricks was started by creators of Spark to
provide Spark-as-a-service in the cloud
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Big Data

gdatabricks Spark



Big Streaming Data
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Why process Big Streaming Data”

Fraud detection in bank transactions

Cat videos in tweets

vy vy
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How to Process Big Streaming Data
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> |ngest — Receive and buffer the streaming data
> Process — Clean, extract, transform the data

> Store — Store transformed data for consumption
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How to Process Big Streaming Data
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Raw Tweets

> For big streams, every step requires a cluster

> Every step requires a system that is designed for it
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Stream Ingestion Systems

Ingest

W N Y data

Raw Tweets

> Kafka — popular distributed pulb-sub system

> Kinesis — Amazon managed distributed pub-sub

> Flume — like a distributed data pipe
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Stream Ingestion Systems
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Raw Tweets

> Storm — most widely deployed (as of now ;) )

> Samza — gaining popularity in certain scenarios
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> Spark Streaming — most demanded
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Stream Ingestion Systems
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cassandra

-ille systems — HDFS, Amazon S3, etc.

Key-value stores — HBase, Cassandra, etc.

Databases — MongoDB, MemSQL, etc.
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§‘8 kafka Producers and Consumers

Topic X

Producer 1 Consumer
(tODICﬁB‘H\)) 7 7 (topicX, datal)

opicY, data2 (topicX, data1)

' ’
e )
Producer 2 Kafka Cluster Topic Y

Consumer

> Producers publish data tagged by “topic”
> Consumers subscribe to data of a particular “topic”
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§8 kafka Topics and Partitions

> Topic = category of message, divided into partitions
> Partition = ordered, numbered stream of messages

> Producer decides which (topic, partition) to put each
message in

Anatomy of a Topic

Partition 11111

0 0(1]12|13(4|5|6(7|8]|9 ol1l2! \
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Partition ' - / Writes
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§8 kafka Topics and Partitions

> Topic = category of message, divided into partitions
> Partition = ordered, numbered stream of messages

> Producer decides which (topic, partition) to put each
message in

> Consumer decides which (topic, partition) to pull
messages from

- High-level consumer — handles fault-recovery with
Z00Keeper

- Simple consumer — low-level API for greater control
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How to process Kafka messages?

( ) 4 )

Ingest Process
¥y ¥ y> data O data
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Streaming

> |[ncoming tweets received in distributed manner
and buffered in Kafka

> How to process them??
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What is Spark Streaming?

Scalable, fault-tolerant stream processing system

High-level API Fault-tolerant Integration
joins, windows, ... Exactly-once semantics, Integrate with MLlIib, SQL,
often 5x less code even for stateful ops DataFrames, GraphX

Kafka 4 )
Flume ¢"Z File systems
HDFS Sp Qr K Databases
Kinesis : Stre aming Dashboards
Twitter \_ _J
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How does Spark Streaming work?

> Recelvers chop up data streams into batches of
few seconds

> Spark processing engine processes each batch
and pushes out the results to external data stores

SpQr‘I'(\Z Streaming

? 4 R
o) J\z
=
data streams> Q Spr K >
() dedad s
5 batches as - GG _/ | results as
RDDs RDDs
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Spark Programming Modéel

> Resilient distributed datasets (RDDs)

— Distributed, partitioned collection of objects

- Manipulated through parallel transformations
(map, filter, reduceByKey, ...)

- All transformations are lazy, execution forced by actions
(count, reduce, take, ...)

— Can be cached in memory across cluster

- Automatically rebuilt on failure
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Spark Streaming Programming Model

> Discretized Stream (DStream)
- Represents a stream of data
- Implemented as a infinite sequence of RDDs

> DStreams AP very Simila(r to RDD AP
¢

- Functional APIs in #Scala <=>Java @ python

—

- Create input DStreams from Kafka, Flume, Kinesis, HDFS, ...
- Apply transformations
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Example — Get hashtags from Twitter

val ssc = new StreamingContext(conf, Seconds(1))

StreamingContext is the starting Batch interval, by which
point of all streaming functionality streams will be chopped up
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Example — Get hashtags from Twitter

val ssc = new StreamingContext(conf, Seconds(1))

val tweets = TwitterUtils.createStream(ssc, auth)

S~
Input DStream

Twitter Streaming APl | batch@t| |batch@ts1 |batch @42 ﬁ

tweets DStream

replicated and stored in
memory as RDDs
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Example — Get hashtags from Twitter

val tweets = TwitterUtils.createStream(ssc, None)

val hashTags = tweets.flatMap(status => getTags(status))

transformed transformation: modify data in one
DStream DStream to create another DStream

tweets DStream

hashTags Dstream
[#cat, #dog, ... ]

new RDDs created
for every batch
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Example — Get hashtags from Twitter

val tweets = TwitterUtils.createStream(ssc, None)
val hashTags = tweets.flatMap(status => getTags(status))
hashTags.saveAsTextFiles("hdfs://...")

ﬁ output operation: to push data to external storage ]

batch @ t batch @ t+1 batch @ t+2
tweets DStream

flatMap flatMap flatMap

hashTags DStream

save save save

\ @E« ’ every batch
saved to HDFS
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Example — Get hashtags from Twitter

val tweets = TwitterUtils.createStream(ssc, None)
val hashTags = tweets.flatMap(status => getTags(status))
hashTags.foreachRDD(hashTagRDD => { ... })

ﬁforeachRDD: do whatever you want with the processed data]

batch @ t batch @ t+1 batch @ t+2
tweets DStream

flatMap flatMap flatMap
hashTags DStream

foreach foreach foreach

Werite to a database, update analytics
Ul, do whatever you want
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Example — Get hashtags from Twitter

val tweets = TwitterUtils.createStream(ssc, None)
val hashTags = tweets.flatMap(status => getTags(status))
hashTags.foreachRDD(hashTagRDD => { ... })

all of this was just setup for what to do when
streaming data is receiver

ssc.start() — thisactually starts the receiving and processing]
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What’s going on inside?

> Recelver buffers tweets
in Executors’ memory Spark Cluster

> Spark Streaming Driver
launches tasks to
process tweets

yvs>-

Raw Tweets \

launch tasks to
process tweets

river
running

DStreams

~

N

Buffered
Tweets

Buffered
Tweets

Twitter
Receiver

Executors
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What’s going on inside”?
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Performance

Can process 60M records/sec (6 GB/sec) on
100 nodes at sub-second latency
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Window-based Transformations

val tweets = TwitterUtils.createStream(ssc, auth)
val hashTags = tweets.flatMap(status => getTags(status))
val tagCounts = hashTags.window(Minutes(1l), Seconds(5)).countByValue()

[Sl'd'ngw'é\\/\/q window length | | sliding interval
operation | |

window length
A

= T ST
DStream of data H{J

sliding interval
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Arbitrary Stateful Computations

Specify function to generate new state based on
previous state and new data

- Example: Maintain per-user mood as state, and update
it with their tweets

def updateMood(newTweets, lastMood) => newMood

val moods = tweetsByUser.updateStateByKey(updateMood )
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Integrates with Spark Ecosystem

Spark
Streaming

Spark Core

Spark SQL

MLLib GraphX
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Combine batch and streaming processing

> Join data streams with static data sets

// Create data set from Hadoop file
val dataset = sparkContext.hadoopFile(“file”

Spark

// Join each batch in stream with dataset [SEESSOME :
Streaming

MLlib GraphX

kafkaStream.transform { batchRDD =>

batchRDD. join(dataset)filter(...)
} Spark Core
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Combine machine learning with streaming

> |earn models offline, apply them online

// Learn model offline

val model = KMeans.train(dataset, ...)

Spark

Spark SQL Streaming MLLlib GraphX

// Apply model online on stream

kafkaStream.map { event =>

model.predict(event.feature) Spark Core

}
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Combine SQL with streaming

> Interactively query streaming data with SQL

// Register each batch in stream as table

kafkaStream.map { batchRDD => Spark

Streaming

Spark SQL

) MLlib GraphX
batchRDD.registerTempTable("latestEvents"”

Spark Core
// Interactively query table

sqlContext.sql("select * from latestEvents")
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100+ known industry deployments

NETFLIX ‘@ produban .|||,|||.

"% CISCO.

X RelayHealth DRTASTAX.®

O in/\,tel kelkoo Y~ @FAMDATA
Asialnfo ‘

Vi rd ata () CLOUDPHYSICS

= stratio gUAVUS

viadedo

sharethrough °
PEARSON Pinterest

VELOCIDATA

Atigeo  ..00vALA

gdatabricks Spqr‘llg



Why are they adopting Spark Streaming?

Easy, high-level API
Unified API across batch and streaming
Integration with Spark SQL and MLIib

Ease of operations
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Neuroscience @ Freeman Lab, Janelia Farm

Spark Streaming and MLIiIb
to analyze neural activities i /m

Microscope Interactive visualiztion

\&‘\% Ioc.zl
I ( \’/ server
Laser microscope scans e
Zebrafish brain=> Spark B ==
Streaming =2 interactive \
visualization =
. : Spark
laser ZAP to kill neurons! S

http://www.jeremyfreeman.net/share/talks/spark-summit-2014
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Neuroscience @ Freeman Lab, Janelia Farm

Streaming machine learning
algorithms on time series
data of every neuron

Upto 2TB/hour and
Increasing with brain size

Upto 80 HPC nodes

http://www.jeremyfreeman.net/share/talks/spark-summit-2014/
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Streaming Machine Learning Algos

> Streaming Linear Regression

> Streaming Logistic Regression

> Streaming KMeans

http://www.jeremyfreeman.net/share/talks/spark-summit-east-2015/#/algorithms-repeat
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Okay okay, how do | start off?

> Online Streaming

Programming Guide

http://spark.apache.org/docs/latest/streaming-programming-quide.html

> Streaming examples

https://github.com/apache/spark/tree/master/examples/src/main/scala/

org/apache/spark/examples/streaming
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Spark Streaming Programming Guide

e Overview
¢ A Quick Example
« Basic Concepts

©O 0O 0o 0o 0o 00 0 O 0 ©

o

o

[}

[}

Linking

Initializing StreamingContext
Discretized Streams (DStreams)
Input DStreams and Receivers
Transformations on DStreams
Output Operations on DStreams
DataFrame and SQL Operations
MLIib Operations

Caching / Persistence
Checkpointing

Deploying Applications
Monitoring Applications

Performance Tuning

Reducing the Batch Processing Times
Setting the Right Batch Interval
Memory Tuning

Fault-tolerance Semantics
Migration Guide from 0.9.1 or below to 1.x
Where to Go from Here

Overview

Spark Streaming is an extension of the core Spark API that enables scalable, high-throughput
streams. Data can be ingested from many sources like Kafka, Flume, Twitter, ZeroMQ, Kinesit
algorithms expressed with high-level functions like map, reduce, join and window. Finally, proc
databases, and live dashboards. In fact, you can apply Spark’s machine learning and graph p
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