Data Parallel EM for estimating the Genome Relative Abundance (GRA) in Metagenomic Samples

Orren Karniol-Tambour
Setting: We’ve taken a sample from a microbial community - e.g. water from a pond, blood sample from a sick human. The sample contains traces of the DNA and RNA of viruses and bacteria living in the pond/body.

We perform shotgun sequencing on the sample and get a series of genomic reads - i.e. strings of nucleotide bases:

```
ACGTCGATCGCTAGCCGCATCAGCAAACAACACGCTACAGCCT
```

So we have:
- a set of known reference genomes (long strings).
- a set of reads (shorter strings), along with the number of high quality ‘hits’ from each read to each genome (where a ‘hit’ reflects edit distance between the read string and substring of a reference genome below some threshold)

Our goal is to estimate the relative abundance of all known bacteria and viruses in the environment we sampled from - e.g. figure out why our patient is sick
We assume our reads are drawn iid from a mixture of genomes - so we can view the Genome Relative Abundance (GRA) as a finite mixture we need to estimate and use EM to solve:

Repeat until convergence: {

(E-step) For each i, j, set

$$w_j^{(i)} := p(z^{(i)} = j \mid x^{(i)}; \phi)$$

(M-step) Update the parameters:

$$\phi_j := \frac{1}{m} \sum_{i=1}^{m} w_j^{(i)}$$

}

EM - quick review

- iterative algorithm for finding maximum likelihood estimate of parameters when model depends on latent variables

-'missing' Z data matrix, where Z_{ij} tells us whether sample i came from source j

- pick a guess for parameters, estimate posterior distribution of the Zs given data X and current guess for parameters

- update parameters based on current guess for Zs

- improves on each iteration, converges to local optimum
EM applied to GRA estimation:

Each iteration costs $O(mn)$ time, where m is the number of reads, n is number of genomes

In practice, m is very large (millions) and getting larger as sequencing gets exponentially cheaper and ‘deep’ sequencing becomes common

n is manageable (thousands) and will grow far more slowly

Key insight: we can approximate the likelihood of the data as # hits from read i on genome j, normalized by length of genome j (since hits on shorter genomes are more informative)

E-step

$$Z_{ij}^{(t)} = \frac{p(r_i \mid Z_{ij} = 1; G) \pi_j^{(t)}}{\sum_{k=1}^{n} p(r_i \mid Z_{ik} = 1; G) \pi_k^{(t)}} \approx \frac{(S_{ij} / L_j) \pi_j^{(t)}}{\sum_{k=1}^{n} (S_{ik} / L_k) \pi_k^{(t)}}$$

M-step

$$\pi_j^{(t+1)} = \frac{1}{m} \sum_{i=1}^{m} Z_{ij}^{(t)}$$

Where:
- r_i is the i'th read
- S_{ij} is the number of ‘hits’ from read i to genome j
- L_j is the length of genome j
- π_j is a mixing parameter that describes the contribution of the j'th genome to the mixture, and $\sum_{j=1}^{m} \pi_j = 1$

Xia et al., PLoS One 2011
Compute Z_{ij}:

$$Z_{ij}^{(t)} \approx \frac{(S_{ij} / L_j) \pi_{ij}^{(t)}}{\sum_{k=1}^{n}(S_{ik} / L_k) \pi_{ik}^{(t)}}$$

E-step

$\pi_{j}^{(t+1)} = \frac{1}{m} \sum_{i=1}^{m} Z_{ij}^{(t)}$

M-step

RDD: $(R_i, ((G_j, 1), (G_j, 1), ...))$

- **broadcast** (one to many)
- **collect** (many to one)
- **map** (none)
- **reduceByKey** (many to many)
E-step

map(i, Si:):
 n = length(Si:)
 sum = 0
 for j in n:
 nnZij = (Sij / Lj) Pi(j)
 sum += nnZij
 for j in n:
 nnZij = (Sij / Lj) Pi(j)
 Zij = nnZij / sum
 emit(j, Zij)

M-step

reduce(j, Z:j):
 Pi(j) = sum(Z:j) / m
 emit(j, Pi(j))

Single Machine - Cost of Single Iteration

\(O(mn)\) time

Data Parallel EM - Cost of Single Iteration

Time

E-step: \(O(mn/B)\)
M-step: \(O(n/B)\)
Total: \(O(mn/B)\) time

Communication

broadcast: \(O(nB)\)
shuffle: \(O(nB)\)
(with combiners)
Total: \(O(nB)\)
// Initialize Pi

// get number of genomes
val numGenomes = lengths.value.size

// for now let's just make pi uniform.
val currentPi = lengths.value.keys.toList.map(r => (r, 1 / numGenomes.toDouble)).toMap
val newPi = currentPi

// create empty list to account for genomes we haven't seen
val emptyPi = lengths.value.keys.toList.map(r => (r.toDouble, 0.0)).toList

// Run EM Till Convergence

// params
val maxIterations = 3000
val convergenceTol = 0.000001
var iteration = 0
var maxdiff = 100

while (iteration <= maxIterations && maxdiff > convergenceTol) {

 // broadcast current pi Map to workers
 val pi = sc.broadcast(currentPi)

 // helper function, gets pi for a genome by key
 val getPi = (x: Int) => pi.value.get(x.toString).get.toDouble

 // E step

 // compute Zij
 val computeZij = (r: (String, List[Int])) => {
 // non-normalized Zij
 val zn = r._2.map(x => (x._1, x._2 * getPi(x._1.toInt)))
 // sum of Zij: row
 val znsum = zn.map(x => x._2).sum
 // normalized Zij
 val zn = zn.map(x => (x._1, x._2 / znsum))
 // output: read-i, List((G1, Zi1), (G2, Zi2), ...)
 (r._1, zn)
 }

 // map iterator vals to list, and compute Zij's -- see format above
 val zmatrix = smatrix.mapValues(_.toList).map(r => computeZij(r))

 // compute new estimate of pi
 val pNew = zmatrix.flatMap(x => x._2) // flatMap Z to get (G, Zij) tuples
 // reduce to sum, map to divide, getting (G, PIj) tuples
 // this takes an avg over the Zij column
 .reduceByKey(_ + _).map(x => (x._1, x._2 / numReads))
 // collect to driver as list
 .collect().toList

 // merge new and empty pi lists to get new pi
 newPi = (emptyPi ++ pNew).groupBy(_.1)
 .map(kv => (kv._1.toString, kv._2.map(_.2).sum))

 // Calculate Residual

 // take max abs pairwise diff of pi new-old, equivalent to GRAMMY's maxd() c++ function
 val diffPi = (newPi ++ currentPi).groupBy(_.1)
 .map(kv => (kv._1.toString, kv._2.map(_.2))
 .reduce(_ - _).toList
 var maxdiff = scala.math.abs(diffPi.maxBy(x => scala.math.abs(x._2)))._2

 // assign new pi to current
 currentPi = newPi

 iteration += 1
}