Distributed Max-flow algorithm

Benoît Dancoisne, Emilien Dupont, William Zhang

{benoitd,edupont,wzhang4}@stanford.edu

Stanford University
CME323 Final project

June 1, 2015
Overview

1. Edmonds-Karp algorithm for max-flow
 - Single Machine Algorithm
 - Distributed Algorithm
 - Details

2. Analysis
 - Communication cost
 - Runtime
Edmonds-Karp algorithm for max-flow

- We increment the flow from s to t by finding a flow-augmenting path.
- We do this by finding a path in the residual graph.
- The total flow is increased by the maximum capacity found on our path.
- Maximal flow is found when there are no more flow-augmenting paths.
- Note that we can lower the flow on a particular edge to favor another path.
Residual graph toy example
Residual graph toy example

![Residual graph diagram](image-url)
Residual graph toy example
Assumptions and Methods

- n vertices: can fit on a single machine
- m edges: too large to fit
- Integer edge capacities
- Use Pregel and MapReduces to distribute
Distributed max-flow

Initialization:
- Set flows in all edges to 0
- Set residual graph R_G equal to initial graph

While there is a path from s to t in R_G:
- Find the shortest path P between s and t in R_G
- Find max flow f_{max} you can push along P
- Broadcast P
- Update flows
- Update R_G using P and f_{max}
We use the graph object provided by GraphX to build the residual graph.

Edges and flows are stored in a RDD which will be updated at each iteration (each time we find a path).

The path found in the residual graph is stored in an array of size $O(n)$ that will be broadcasted.
Finding the shortest path in Pregel

- Vertex attribute: \((d, c, id)\)
- \(d\): distance from source \(s\)
- \(c\): minimum capacity the node has seen so far
- \(id\): node from which previous message was received
Finding the shortest path in Pregel

- **Vertex attribute**: \((d, c, id)\)
 - **d**: distance from source \(s\)
 - **c**: minimum capacity the node has seen so far
 - **id**: node from which previous message was received
- Each node propagates its id, the minimum capacity found so far and the distance from the source
Finding the shortest path in Pregel

- Vertex attribute: (d, c, id)
- d: distance from source s
- c: minimum capacity the node has seen so far
- id: node from which previous message was received
- Each node propagates its id, the minimum capacity found so far and the distance from the source
- Once we reached the target t, we can backtrack to find the actual path
Finding the shortest path in Pregel

- **Vertex attribute:** \((d, c, id)\)
 - \(d\): distance from source \(s\)
 - \(c\): minimum capacity the node has seen so far
 - \(id\): node from which previous message was received
- Each node propagates its id, the minimum capacity found so far and the distance from the source
- Once we reached the target \(t\), we can backtrack to find the actual path
- If two paths have the same length, we choose the one with maximum capacity (flow)
Finding the shortest path in Pregel

Communication cost
Because the state of a node is changed once at most, there will be at most one message sent per edge: $O(m)$.

Runtime
Initializing vertices: $O(n)$.
Pregel: $\#\text{messages}/\#\text{machines}$, i.e. $O\left(\frac{m}{k}\right)$.
Updating the residual graph

Algorithm 1 Updating the residual graph \(R_G \)

Each key value pair is of the form \(((i,j) : c) \) **Map** (input: edge; output: edge):

- if \(P \) contains edge \((i,j) \) in \(R_G \):
 - emit \(((i,j) : c - f_{max}) \)
 - emit \(((j,i) : f_{max}) \)
- else: emit \(((i,j) : c) \) (no changes)

Reduce: sum
Updating the residual graph

Shuffle size

Map operation emits at most 2 values per edge: $O(m)$.

Runtime

Reduce sums at most 2 values for each edge along the path. But since no a priori knowledge of path: $O\left(\frac{m}{k}\right)$.
Communication cost

<table>
<thead>
<tr>
<th>Step</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shortest path</td>
<td>$O(m)$</td>
</tr>
<tr>
<td>Broadcast</td>
<td>$O(nk)$</td>
</tr>
<tr>
<td>Residual graph update</td>
<td>$O(m)$</td>
</tr>
</tbody>
</table>

Table: Communication cost
Runtime

<table>
<thead>
<tr>
<th>Step</th>
<th>Sequential</th>
<th>Distributed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shortest path</td>
<td>$O(m)$</td>
<td>$O(m/k)$</td>
</tr>
<tr>
<td>Path building</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>Broadcast</td>
<td>0</td>
<td>$O(n \log(k))$</td>
</tr>
<tr>
<td>Residual graph update</td>
<td>$O(m)$</td>
<td>$O(m/k)$</td>
</tr>
<tr>
<td>Flow update</td>
<td>$O(m)$</td>
<td>$O(m/k)$</td>
</tr>
</tbody>
</table>

Table: Runtime
Comparison with sequential algorithm

Number of iterations

Algorithm terminates after \(\min(c, m(n - 1)) \) iterations where \(c \) is the max-flow. For large graphs usually \(c \ll m(n - 1) \)

Sequential algorithm

- Runtime: \(\mathcal{O}(cm) \)

Distributed algorithm

- Runtime: \(\mathcal{O}(cm/k) + \mathcal{O}(cn \log k) \)
- Communication cost: \(\mathcal{O}(cm) + \mathcal{O}(cnk) \)
Some experimental results
Conclusion

- Problem scales on m (n has to fit on a single machine)
- Runtime optimal: $O(cm) \rightarrow O\left(\frac{cm}{k}\right)$
- Communication cost potentially high, but not for vast majority of applications
- With optimal $k = m/n$. Runtime: $O(cn \log(m/n))$. Communication cost: $O(cm)$
- Largest graph tested: half a million edges