A Distributed Solver for Kernelized SVM

Haoming Li, Bangzheng He

Stanford ICME

haoming@stanford.edu
bzhe@stanford.edu

June 3, 2015
Overview

1. SVM and Kernels
2. SGD method on single machine
3. Parallel Kernal SVM
4. Experiments
5. Conclusions
Support Vector Machines

- A widely used supervised learning model, originally for binary classification.
- Model represented as the normal vector of a separating hyper-plane, w, and has convex objective (primal):

$$f(w) = \frac{\lambda}{2} \|w\|^2 + \frac{1}{m} \sum_{i=1}^{m} \max\{0, 1 - y_i \langle w, \phi(x_i) \rangle\}$$

It has the form 2-norm regularization + empirical loss.
\(\{(x_i, y_i) | x_i \in \mathbb{R}^d, y_i \in \{-1, 1\}\}_{i=1}^{m}\) is the training data.
- The lagrange dual function has the form:

$$L_D = -\frac{1}{2} \sum_{i,j=1}^{m} y_i y_j \alpha_i \alpha_j \langle \phi(x_i), \phi(x_j) \rangle + \sum_{i=1}^{m} \alpha_i$$
Kernels

- The optimal w can be written as a superposition of training data:

$$w = \sum_{i=1}^{m} \alpha_i y_i \phi(x_i)$$

$$\langle w, \phi(x) \rangle = \sum_{i=1}^{m} \alpha_i y_i \langle \phi(x_i), \phi(x) \rangle$$

- Therefore we need not specify the transformation $\phi(x_i)$ at all, but require only knowledge of the kernel function:

$$K(x_i, x_j) = \langle \phi(x_i), \phi(x_j) \rangle$$

- Popular kernels include radial basis function (rbf), d^{th}-Degree polynomial kernels, etc.

$$rbf : K(x_i, x_j) = \exp(-\gamma \|x_i - x_j\|^2)$$
Based on stochastic gradient descent, the empirical loss can be approximated by the hinge loss on a single training sample.

At iteration t, we randomly pick up a sample (x_i, y_i), then we have the sub-gradient:

$$\lambda w - \begin{cases} y_i \phi(x_i), & y_i \langle w, \phi(x_i) \rangle < 1 \\ 0, & otherwise \end{cases}$$

For faster learning rate, update the predictor w:

$$w \leftarrow (1 - \frac{1}{t})w + \begin{cases} \frac{y_i}{\lambda t} \phi(x_i), & y_i \langle w, \phi(x_i) \rangle < 1 \\ 0, & otherwise \end{cases}$$

$$w \leftarrow \min \left\{ 1, \frac{1}{\sqrt{\lambda} \|w\|_2} \right\}$$
S-pack sequential algorithm

\textbf{Input:} λ, T, training data
\begin{algorithmic}[1]
\State \textbf{Initialize:} $H = \emptyset$, $s = 1$, $\text{norm} = 0$
\For{$t = 1, 2, \ldots, T$}
\State Randomly pick training sample (x, y)
\State $y' \leftarrow s \sum_{(x_i, \beta_i) \in H} \beta_i K(x_i, x)$
\State $s \leftarrow (1 - 1/t)s$
\If{$yy' < 1$}
\State $\text{norm} \leftarrow \text{norm} + 2yy'/\lambda t + (y/\lambda t)^2 K(x, x)$
\If{key x is found in H}
\State $(x, \beta) \leftarrow (x, \beta + y/\lambda ts)$
\Else
\State $H \leftarrow H \cup (x, y/\lambda ts)$
\EndIf
\EndIf
\EndFor
\State \textbf{return} s, H
\end{algorithmic}

Training data size m, number of features $d(x \in \mathbb{R}^d)$. Only line 4 take at most $O(md)$ time, other commands run in constant time.

And it was analyzed in Pegasos[Shalev-Shwartz, Shai, et al.] that it requires $T = O(1/\lambda \delta \epsilon)$ iterations to get $|f(w) - f(w^*)| < \epsilon$ with at least $1 - \delta$ probability.

Total runtime $O(md/\lambda \delta \epsilon)$. Since the optimal $\lambda = O(1/m)$, total runtime $O(m^2d/\delta \epsilon)$.
Parallel P-pack Algorithm

Assumptions:

- The feature dimension d is not too large, that is, a small number of data points can fit in single machine.
- The data size m is large so that it should be distributed as RDD.
- The model, i.e., support vectors, are also distributed.
- Kernel function $K(x_1, x_2)$ can be computed in $O(d)$.

Idea: parallelize the computation in each iteration, in particular the computation of sub-gradient, in which the most costly part is to evaluate the response of the chosen sample based on the current model.
Parallel P-pack Algorithm

- If the current model is stored as RDD[x, y, α], then given any sample (x_i, y_i), we can easily compute its response in parallel by broadcasting - map - all reduce. Then send this response back to the driver and finish the computation of sub gradient locally on worker, which takes constant time in spite of m or d or anything.

- The tricky part is updating the model. RDDs usually don’t serve well as distributed hash tables.

- Luckily found IndexedRDD: developed by AMPLab, using Long keys and can efficiently lookup/update elements in RDD by key.
Parallel P-pack Algorithm: packing strategy

Suggested by the author, a packing strategy might help. In each iteration:

- Pick \(r \) rather than 1 samples at a time.
- Compute sub-gradient with respect to these samples sequentially.
- Update the model with \(r \) updates at a time.

Doesn’t reduce the computational cost at all (even increases it a little bit), but is desirable in practice. (Latency and efficiency of IndexedRDD).
Parallel P-pack for Kernal SVM

1. Processor i (total number of processors p)
2. Input: \(\lambda, T, r, D \) (training data rdd)
3. Initialize: \(H = \text{IndexedRDD}(D.\text{map}((x, y) \Rightarrow (\text{idx}, x, y, \alpha = 0))) \), \(s = 1 \), \(\text{norm} = 0 \)
4. for \(t = 1, 2, \ldots, T/r \) do
5. Randomly pick \(r \) samples \((\text{idx}_1, x_1, y_1), \ldots, (\text{idx}_r, x_r, y_r)\), broadcast to all processors
6. for \(k = 1, \ldots, r \) do
7. \(y'_k \leftarrow H.\text{map}(h \Rightarrow h.y \cdot h.\alpha \cdot K(x_k, h.x)).\text{reduce}(+) \)
8. Calculate \(\text{pair}_{u,v} \leftarrow K(x_u, x_v) \) \((u = 1, \ldots, r; v = 1, \ldots, r; u \leq v)\) in distributed manner
9. \(\text{LocalSet} \leftarrow \emptyset \)
10. for \(k = 1, \ldots, r \) do
11. \(t' \leftarrow t \cdot r + k ; s \leftarrow (1 - 1/t')s \)
12. for \(l = k + 1, \ldots, r \) do
13. \(y'_l \leftarrow (1 - 1/t')y'_l \)
14. if \(y_k y'_k < 1 \) then
15. \(\text{norm} \leftarrow \text{norm} + 2y_k y'_k / \lambda t + (y / \lambda t)^2 \text{pair}_{k,k} \)
16. \(\text{LocalSet} \leftarrow \text{LocalSet} \cup \{(\text{idx}_k, x_k, y_k, 1 / \lambda t', s)\} \)
17. for \(l = k + 1, \ldots, r \) do
18. \(y'_l \leftarrow y'_l + y_k \cdot \text{pair}_{k,l} / \lambda t' \)
19. if \(\text{norm} > 1/\lambda \) then
20. \(s \leftarrow \frac{s}{\sqrt{\lambda \cdot \text{norm}}} ; \text{norm} \leftarrow 1 / \lambda \)
21. for \(l = k + 1, \ldots, r \) do
22. \(y'_l \leftarrow \frac{y'_l}{\sqrt{\lambda \cdot \text{norm}}} \)
23. Update \(H \) according to \(\text{LocalSet} \)
24. return \(s, H \)
Computational Cost

Data size m, feature dimension d, regularization parameter λ, packing size r, running T iterations (T/r rounds of updates), using p processors. In each round:

- Line 6, computing contribution to responses by each support vector for r samples: $O(rd \cdot \frac{m}{p})$
- Line 6, sum up responses from all processors: $O(rp)$
- Line 9, computing pairwise inner-products: $O(\frac{r^2d}{p})$
- The rest: $O(r^2)$

The total computation cost is:

$$\frac{T}{r} \cdot O\left(\frac{rd}{p} + rp + \frac{r^2d}{p} + r^2\right) = T \cdot O\left(\frac{(m+r)d}{p} + p + r\right)$$

Considering the fact that $r = O(m)$ and optimal $\lambda = O(1/m)$ and $T = O(1/\lambda\delta\epsilon)$, we have computational cost:

$$O((m^2d/p + mp) \cdot \frac{1}{\delta\epsilon}) + O(mr/\delta\epsilon)$$

Compared with $O(m^2d/\delta\epsilon)$ of single machine.
Communication Cost

Data size m, feature dimension d, regularization parameter λ, packing size r, running T iterations (T/r rounds of updates), using p processors. In each round:

- Line 4, taking r samples: shuffle $O(rd)$
- Line 4, broadcasting samples: 1-to-all $O(rdp)$
- Line 6, all reduce(with combiners) to get estimated responses: all-to-1 $O(rp)$
- Line 7, collect to send all pairwise inner-product to driver: all-to-1 $O(r^2)$
- Line 23, updating parameters: 1-to-1 $O(rd)$

Summing $\frac{T}{r}$ rounds of update, we have total communication cost:

$$\frac{T}{r} \cdot O(rdp + r^2)$$

Since optimal $\lambda = O(1/m)$ and $T = O(1/\lambda \delta \epsilon)$, the total communication cost can also be denoted as:

$$O((dp + r)m/\delta \epsilon)$$
Empirical results

Using the "UCI Adult" dataset on LibSVM website. 18,000 training samples with 123 features. Rbf kernel is used and we study:

- Convergence with respect to number of iterations T.
- Performance with respect to packing size r.
- Scalability with respect to number of processors p.
Convergence

Study convergence: does this algorithm converge at all? How many iterations does it take? Test accuracy against number of iterations:

We find that this converges after 10000 iterations, about half of the data size \(m \).
Study packing size: given different packing size r, study the runtime:

Empirically the optimal r in our case is around 200.
Since we can only run on our laptops, only $p = 1$ to 4 are tried.

We do benefit from adding cores. We believe better scalability can be achieved if tuning packing size r for different p.
Conclusions

- We studied and implemented a SGD algorithm that can solve Kernel SVM and can benefit from adding more machines, especially when there are not already too many machines.
- Some parameters (i.e., T, r) need to be properly set for best performance.
References

P-packSVM: Parallel primal gradient descent kernel SVM.
Data Mining, 2009. ICDM'09.

Shalev-Shwartz, Shai, et al. (2011)
Pegasos: Primal estimated sub-gradient solver for svm.
Thank you!