OUTLINE

• Support vector machines
• Kernel SVM
• How to parallelize in pySpark
• Experiments
• Take aways
SUPPORT VECTOR MACHINES
General method for regression and classification
BINARY CLASSIFICATION
Find **hyperplane** that maximizes **margin**

Support vectors
SUPPORT VECTORS ⇔ SOLUTION

No change if we (re)move other observations
KERNEL SVM
Find (linear) hyperplane in higher/infinite dimensional space
5000 data points
HOW DOES KERNEL SVM SCALE?

requires kernel matrix $K \in \mathbb{R}^{n \times n}$
INFEASIBLE FOR LARGE \(n \)

\textsf{libsvm} QP solver runs in \(\Theta(n^2 p) \)
CASCADE SVM

Key: Only points on the margin are relevant [1]
THROW AWAY IRRELEVANT POINTS EARLY
def cascade(labeledPointRDD, reducer, nmax):
 n = labeledPointRDD.count()
 numPartitions = int(2**(np.ceil(np.log(n / nmax) / np.log(2.0))))
 leafsRDD = labeledPointRDD.repartition(numPartitions)

 while numPartitions > 1:
 numPartitions = int(numPartitions / 2)

 # need cache against lazy evaluation
 leafsRDD = leafsRDD.mapPartitions(reducer, True) \
 .coalesce(numPartitions) \
 .cache()

 return leafsRDD.collect()

reducer: fit SVM and keep support vectors
5000 data points
CASCADE X

Can apply same cascade to other procedures

• L1VM
• Kernel Logistic Regression with l_1 penalty
• etc.
ALTERNATIVES

• Subsample data
• Low-rank approximation of K
• Big memory machine
PARALLELIZATION
HOW TO REPRESENT DATA

Every observation is a LabeledPoint

Every partition contains a subset of the observations
SCALABILITY

Reduce complexity in n, keep complexity in d
Assumption we can solve SVM of size $\mathcal{O}(\sqrt{n})$, then:

- number of partitions $k \sim \mathcal{O}(\sqrt{n})$
- number of levels $L \sim \mathcal{O}(\log(n))$
RUN TIME

Solve SVM in $O(dn^\alpha)$, for $2 < \alpha < 3$, on single machine

CASCADE SVM:

$O(dn^{\alpha/2} \log(n)) < O(dn^{3/2} \log(n))$

Reduction factor of $n^{\alpha/2}/\log(n)$
COMMUNICATION TYPES

- Repartition: all-to-all
- Coalesce: merge 2 partitions
- Broadcast model: 1-to-all
COMMUNICATION COST

- Repartition data: dn
- Coalesce: $\frac{d(2\sqrt{n}-1)\sqrt{n}}{4} = \Theta(dn)$
- Distribute model: $d\sqrt{n}$
PERFORMANCE
MNIST

60k training set, 10k test set
BENCHMARKS

- **Lower bound**: subsample data
- **Upper bound**: fit SVM on full dataset
REGULAR SVM

- 2k subsample: 6.5% error
- 10k subsample: 3.5% error
- 60k full sample: 1.7% error

CASCADE SVM

- 2k svms: 4.6% error
- 10k svms: 2.1% error

[1] show optimality with multiple loops
TAKE AWAYS
• Using cascades we can parallelize SVMs
• Good if number of SV < \sqrt{n}
• Can extend to similar 'kernel' methods
REFERENCES

QUESTIONS?