CME 323: Distributed Algorithms and Optimization
Instructor: Reza Zadeh (rezab@stanford.edu)
HW#4 - Due 6/6

1. Shallow Graphs For an undirected graph G = (V| E) with n vertices and m edges
(m > n), we say that G is shallow if for every pair of vertices u,v € V, there is a path
from u to v of length at most 2 (i.e. using at most two edges).

(a)
(b)

()

2.376)

Give an algorithm that can decide whether G is shallow in O(n time.

Given an n X r matrix A and an r X n matrix B where r < n, show that we
can multiply A and B in O ((n/r)?*r?37) time. Hint: use the fact that we can
multiply two r x r matrices in O(r?37®) time.

Give an algorithm that can decide whether G is shallow in O(m%%n!4%) time.

Hint: consider length-2 paths that go from low-degree vertices and length-2 paths
that go through high-degree vertices separately. Use result from part (b).

Solution:

(a)

Consider the adjacency matrix A for G. A;; contains the number of paths of
length 1 from node ¢ to 5. Similarly, Afj contains the number of paths of length
2 from node ¢ to j. Thus, (A% + A);; contains the number of paths of length at
most 2 from node i to j. Our algorithm will compute A? + A and return true if
and only if all non-diagonal entries of A% + A are non-zero. A% can be computed
in O(n?*3") using Strassen’s algorithm. A can be computed in O(n?) time, for a
total running time of O(n?37® + n?) = O(n?37).

We simply split up the n x r matrix into n/r r X r matrices, and use block matrix
multiplication. In the case that r does not divide n exactly, we can simply add
rows of zeros to the left-hand multiplicand matrix, and add columns of zeros to
the right-hand multiplicand matrix and then remove extraneous rows and columns
from the result.

We perform [n/r] x [n/r] block matrix multiplications, each taking O(r?376)
time.

The runtime will be O([n/r]?r*3) = O((n/r + 1)*r?370) = O((n/r)*r*37).

1: for edge (v,w) € E do

2 if v is low-degree then

3 for each neighbor u of v do
4: Mlu,w] =1

5: Mw,u] =1

6 end for

7 end if

8 if w is low-degree then

9: for each neighbor u of w do
10: Mlu,v] =1

11: Mv,ul =1

12: end for

13: end if

14: end for

We will maintain a boolean matrix M that will have M;; = 1 if and only if there
is a path of length at most 2 between node i and j. We initialize M = A, the
adjacency matrix for GG, leaving only paths of length 2 to be considered. At the
end, we check each entry of M and claim the graph is shallow if and only if all
non-diagonal entries of M are positive. Since M is initialized to A, it already
contains paths of length 1. We will continuously update M to take into account
paths of length 2. To do that, we look at all possible ordered triples (u,v,w).
Each triple defines a path of length 2 going from u to w, through v.

We split the vertex set into two sets:
Vg ={veV|deg(v) >d}, Vp={veV|deg(v)<d}

Consider each ordered triple (u,v,w) defining a path from u to v to w. Either
veV,orveVy.

Case: v € V;, i.e., the middle vertex is low degree

This step takes at most O(md) time since for each edge we check at most d
neighbors.

Case: v € Vp, i.e., the middle vertex is high-degree

We construct a matrix B with dimensions n x r where r = |Vy|. Each row
corresponds to a node in V' and each column corresponds to a node in V. B;; =1
if and only if there is an edge between arbitrary node ¢ and Vy-member j. Thus
BBT gives us the number of paths of length 2 from arbitrary node i to arbitrary
node j that go through some high-degree node as the middle node. We can do the
BBT computation in O((n/r)?*r*37) time. We then update M to M = M + BB™.

Since 2m = sum of all degrees > |Vy|d = rd. Thus r < 2m/d. So the computa-
tion takes O((n/r)*r?37) = O(n2r%37%) = O(n*(m/d)%37°).

So now we’ve covered all cases, M accounts for all possible paths of length 2 going
through high-degree or low-degree vertices.

Finally we traverse M and claim the graph is shallow if and only if all non-diagonal
entries of M are non-zero. This O(n?) will be dominated by O(n'%5m°?5), since
m > n.

Thus total running time is O(md + n?(m/d)*37). We now minimize this bound
with respect to d. Setting md = n?(m/d)%3" gives d* = n'*>m =045 Substituting
back in gives a bound of O(md* + n*(m/d*)%37¢) = O(n'*m°%).

2. Write a Spark program to compute the Singular Value Decomposition of the following
10 x 3 matrix:

-0.5529181 -0.5465480 0.009519836

2

-0.5428579 -1.5623879 0.982464609
-1.3038629 0.5715549 0.499441144
0.6564096 1.1806877 0.495705999
-1.2061171 1.3430651 0.153477135
0.2938439 -1.7966043 0.914381381
-0.2578953 0.2596407 0.815623895
0.9659582 2.3697927 0.320880634
-0.4038109 0.9846071 0.488856619
0.6029003 -0.3202214 0.380347546

Assume the matrix is tall and skinny, so the rows should be split up and inserted into
an RDD. Each row can fit in memory on a single machine. Report all singular vectors
and values and submit your Spark program.

3. Given a matrix M in row format as an RDD[ARRAY[DOUBLE]] and a local vector x
given as an ARRAY[DOUBLE], give Spark code to compute the matrix vector multiply
Mzx.

Solution:

x_bc = sc.broadcast(x)
output = M.map(lambda row: np.dot(row, x_bc.value)).collect()

4. In class we saw how to compute highly similar pairs of m-dimensional vectors z,y via
sampling in the mappers, where the similarity was defined by cosine similarity: m
Show how to modify the sampling scheme to work with overlap similarity, defined as

lap(z,y) = —Y
overiapl\x =
P = in(2 2, [y B)

(a) Prove shuffle size is still independent of m, the dimension of x and y.

(b) Assuming combiners are used with B mapper machines, analyze the shuffle size.
Solution:

(a) We modify the DIMSUM mapper as follows:

Algorithm 1 DIMSUMOverlapMapper(r;)

for all pairs (a;;, a;x) in r; do

1
With probability min (1, Y —)
min(||c;[[3, [lc;115)

emit ((], k’) — aija,-k)
end for

The shuffle size of this scheme is O(nLvy/H?) where H is the smallest nonzero
element of A in magnitude. To show this we start with the expected contribution

3

from each pair of columns.

n #(ci, C])
= Z Z Z (DIMSUMOverlapEmit(c¢;, ¢;))
1= 1] i+1 =
= Z Z #(ci, ¢;) P(DIMSUMOverlapEmit(c;, ¢;))
=1 j=i+1
(¢iyc))
< 15 &g
ZZ i |cz||27||cj||>
DIPWE S
= 1] i+1

The fourth equality comes from assuming WLOG ||¢;[13 < ||¢;3-

(b) In the naive case with combiners, each of the B machines will emit at most n?
pairs — one for each element in A” A. However, without combiners we know that
DIMSUM will have a shuffle size of at most nLvy/H?. Thus the shuffle size is at
most O(min(Bn? nLy/H?)).

