
CME 323: Distributed Algorithms and Optimization
Instructor: Reza Zadeh (rezab@stanford.edu)

HW#4 - Due 6/6

1. Shallow Graphs For an undirected graph G = (V,E) with n vertices and m edges
(m ≥ n), we say that G is shallow if for every pair of vertices u, v ∈ V , there is a path
from u to v of length at most 2 (i.e. using at most two edges).

(a) Give an algorithm that can decide whether G is shallow in O(n2.376) time.

(b) Given an n × r matrix A and an r × n matrix B where r ≤ n, show that we
can multiply A and B in O ((n/r)2r2.376) time. Hint: use the fact that we can
multiply two r × r matrices in O(r2.376) time.

(c) Give an algorithm that can decide whether G is shallow in O(m0.55n1.45) time.
Hint: consider length-2 paths that go from low-degree vertices and length-2 paths
that go through high-degree vertices separately. Use result from part (b).

Solution:

(a) Consider the adjacency matrix A for G. Aij contains the number of paths of
length 1 from node i to j. Similarly, A2

ij contains the number of paths of length
2 from node i to j. Thus, (A2 + A)ij contains the number of paths of length at
most 2 from node i to j. Our algorithm will compute A2 + A and return true if
and only if all non-diagonal entries of A2 + A are non-zero. A2 can be computed
in O(n2.376) using Strassen’s algorithm. A can be computed in O(n2) time, for a
total running time of O(n2.376 + n2) = O(n2.376).

(b) We simply split up the n× r matrix into n/r r× r matrices, and use block matrix
multiplication. In the case that r does not divide n exactly, we can simply add
rows of zeros to the left-hand multiplicand matrix, and add columns of zeros to
the right-hand multiplicand matrix and then remove extraneous rows and columns
from the result.

We perform ⌈n/r⌉ × ⌈n/r⌉ block matrix multiplications, each taking O(r2.376)
time.

The runtime will be O(⌈n/r⌉2r2.376) = O((n/r + 1)2r2.376) = O((n/r)2r2.376).

(c) 1: for edge (v, w) ∈ E do
2: if v is low-degree then
3: for each neighbor u of v do
4: M [u,w] = 1
5: M [w, u] = 1
6: end for
7: end if
8: if w is low-degree then
9: for each neighbor u of w do
10: M [u, v] = 1
11: M [v, u] = 1

12: end for
13: end if
14: end for

We will maintain a boolean matrix M that will have Mij = 1 if and only if there
is a path of length at most 2 between node i and j. We initialize M = A, the
adjacency matrix for G, leaving only paths of length 2 to be considered. At the
end, we check each entry of M and claim the graph is shallow if and only if all
non-diagonal entries of M are positive. Since M is initialized to A, it already
contains paths of length 1. We will continuously update M to take into account
paths of length 2. To do that, we look at all possible ordered triples (u, v, w).
Each triple defines a path of length 2 going from u to w, through v.

We split the vertex set into two sets:

VH = {v ∈ V | deg(v) > d}, VL = {v ∈ V | deg(v) ≤ d}

Consider each ordered triple (u, v, w) defining a path from u to v to w. Either
v ∈ VL or v ∈ VH .

Case: v ∈ VL, i.e., the middle vertex is low degree

This step takes at most O(md) time since for each edge we check at most d
neighbors.

Case: v ∈ VH, i.e., the middle vertex is high-degree

We construct a matrix B with dimensions n × r where r = |VH |. Each row
corresponds to a node in V and each column corresponds to a node in VH . Bij = 1
if and only if there is an edge between arbitrary node i and VH-member j. Thus
BBT gives us the number of paths of length 2 from arbitrary node i to arbitrary
node j that go through some high-degree node as the middle node. We can do the
BBT computation in O((n/r)2r2.376) time. We then update M to M = M+BBT .

Since 2m = sum of all degrees ≥ |VH |d = rd. Thus r ≤ 2m/d. So the computa-
tion takes O((n/r)2r2.376) = O(n2r0.376) = O(n2(m/d)0.376).

So now we’ve covered all cases, M accounts for all possible paths of length 2 going
through high-degree or low-degree vertices.

Finally we traverseM and claim the graph is shallow if and only if all non-diagonal
entries of M are non-zero. This O(n2) will be dominated by O(n1.45m0.55), since
m ≥ n.

Thus total running time is O(md + n2(m/d)0.376). We now minimize this bound
with respect to d. Setting md = n2(m/d)0.376 gives d∗ = n1.45m−0.45. Substituting
back in gives a bound of O(md∗ + n2(m/d∗)0.376) = O(n1.45m0.55).

2. Write a Spark program to compute the Singular Value Decomposition of the following
10× 3 matrix:

-0.5529181 -0.5465480 0.009519836

2

-0.5428579 -1.5623879 0.982464609

-1.3038629 0.5715549 0.499441144

0.6564096 1.1806877 0.495705999

-1.2061171 1.3430651 0.153477135

0.2938439 -1.7966043 0.914381381

-0.2578953 0.2596407 0.815623895

0.9659582 2.3697927 0.320880634

-0.4038109 0.9846071 0.488856619

0.6029003 -0.3202214 0.380347546

Assume the matrix is tall and skinny, so the rows should be split up and inserted into
an RDD. Each row can fit in memory on a single machine. Report all singular vectors
and values and submit your Spark program.

3. Given a matrix M in row format as an RDD[Array[Double]] and a local vector x
given as an Array[Double], give Spark code to compute the matrix vector multiply
Mx.

Solution:

x_bc = sc.broadcast(x)

output = M.map(lambda row: np.dot(row, x_bc.value)).collect()

4. In class we saw how to compute highly similar pairs of m-dimensional vectors x, y via

sampling in the mappers, where the similarity was defined by cosine similarity: xT y
|x|2|y|2 .

Show how to modify the sampling scheme to work with overlap similarity, defined as

overlap(x, y) =
xTy

min(|x|22, |y|22)

(a) Prove shuffle size is still independent of m, the dimension of x and y.

(b) Assuming combiners are used with B mapper machines, analyze the shuffle size.

Solution:

(a) We modify the DIMSUM mapper as follows:

Algorithm 1 DIMSUMOverlapMapper(ri)

for all pairs (aij, aik) in ri do

With probability min

(
1, γ

1

min(∥ci∥22, ∥cj∥22)

)
emit ((j, k) → aijaik)

end for

The shuffle size of this scheme is O(nLγ/H2) where H is the smallest nonzero
element of A in magnitude. To show this we start with the expected contribution

3

from each pair of columns.

=
n∑

i=1

n∑
j=i+1

#(ci,cj)∑
k=1

P (DIMSUMOverlapEmit(ci, cj))

=
n∑

i=1

n∑
j=i+1

#(ci, cj)P (DIMSUMOverlapEmit(ci, cj))

≤
n∑

i=1

n∑
j=i+1

γ
#(ci, cj)

min(∥ci∥22, ∥cj∥22)

=
n∑

i=1

n∑
j=i+1

γ
#(ci, cj)

cTi ci

≤ γ
n∑

i=1

1

cTi ci

n∑
j=1

#(ci, cj)

≤ γ
n∑

i=1

1

#(ci)H2
L#(ci)

= γLn/H2

The fourth equality comes from assuming WLOG ∥ci∥22 ≤ ∥cj∥22.
(b) In the naive case with combiners, each of the B machines will emit at most n2

pairs — one for each element in ATA. However, without combiners we know that
DIMSUM will have a shuffle size of at most nLγ/H2. Thus the shuffle size is at
most O(min(Bn2, nLγ/H2)).

4

