CME 323: Distributed Algorithms and Optimization

Instructor: Reza Zadeh (rezab@stanford.edu)
HW\#4 - Due 6/6

1. Shallow Graphs For an undirected graph $G=(V, E)$ with n vertices and m edges ($m \geq n$), we say that G is shallow if for every pair of vertices $u, v \in V$, there is a path from u to v of length at most 2 (i.e. using at most two edges).
(a) Give an algorithm that can decide whether G is shallow in $O\left(n^{2.376}\right)$ time.
(b) Given an $n \times r$ matrix A and an $r \times n$ matrix B where $r \leq n$, show that we can multiply A and B in $O\left((n / r)^{2} r^{2.376}\right)$ time. Hint: use the fact that we can multiply two $r \times r$ matrices in $O\left(r^{2.376}\right)$ time.
(c) Give an algorithm that can decide whether G is shallow in $O\left(m^{0.55} n^{1.45}\right)$ time. Hint: consider length-2 paths that go from low-degree vertices and length-2 paths that go through high-degree vertices separately. Use result from part (b).

Solution:

(a) Consider the adjacency matrix A for $G . A_{i j}$ contains the number of paths of length 1 from node i to j. Similarly, $A_{i j}^{2}$ contains the number of paths of length 2 from node i to j. Thus, $\left(A^{2}+A\right)_{i j}$ contains the number of paths of length at most 2 from node i to j. Our algorithm will compute $A^{2}+A$ and return true if and only if all non-diagonal entries of $A^{2}+A$ are non-zero. A^{2} can be computed in $O\left(n^{2.376}\right)$ using Strassen's algorithm. A can be computed in $O\left(n^{2}\right)$ time, for a total running time of $O\left(n^{2.376}+n^{2}\right)=O\left(n^{2.376}\right)$.
(b) We simply split up the $n \times r$ matrix into $n / r r \times r$ matrices, and use block matrix multiplication. In the case that r does not divide n exactly, we can simply add rows of zeros to the left-hand multiplicand matrix, and add columns of zeros to the right-hand multiplicand matrix and then remove extraneous rows and columns from the result.

We perform $\lceil n / r\rceil \times\lceil n / r\rceil$ block matrix multiplications, each taking $O\left(r^{2.376}\right)$ time.
The runtime will be $O\left(\lceil n / r\rceil^{2} r^{2.376}\right)=O\left((n / r+1)^{2} r^{2.376}\right)=O\left((n / r)^{2} r^{2.376}\right)$.
(c) 1: for edge $(v, w) \in E$ do

$$
\begin{aligned}
& \text { if } v \text { is low-degree then } \\
& \quad \text { for each neighbor } u \text { of } v \text { do } \\
& \quad M[u, w]=1 \\
& M[w, u]=1 \\
& \text { end for } \\
& \text { end if } \\
& \text { if } w \text { is low-degree then } \\
& \text { for each neighbor } u \text { of } w \text { do } \\
& M[u, v]=1 \\
& M[v, u]=1
\end{aligned}
$$

```
            end for
        end if
end for
```

We will maintain a boolean matrix M that will have $M_{i j}=1$ if and only if there is a path of length at most 2 between node i and j. We initialize $M=A$, the adjacency matrix for G, leaving only paths of length 2 to be considered. At the end, we check each entry of M and claim the graph is shallow if and only if all non-diagonal entries of M are positive. Since M is initialized to A, it already contains paths of length 1 . We will continuously update M to take into account paths of length 2. To do that, we look at all possible ordered triples (u, v, w). Each triple defines a path of length 2 going from u to w, through v.
We split the vertex set into two sets:

$$
V_{H}=\{v \in V \mid \operatorname{deg}(v)>d\}, \quad V_{L}=\{v \in V \mid \operatorname{deg}(v) \leq d\}
$$

Consider each ordered triple (u, v, w) defining a path from u to v to w. Either $v \in V_{L}$ or $v \in V_{H}$.
Case: $v \in V_{L}$, i.e., the middle vertex is low degree
This step takes at most $O(m d)$ time since for each edge we check at most d neighbors.
Case: $v \in V_{H}$, i.e., the middle vertex is high-degree
We construct a matrix B with dimensions $n \times r$ where $r=\left|V_{H}\right|$. Each row corresponds to a node in V and each column corresponds to a node in $V_{H} . B_{i j}=1$ if and only if there is an edge between arbitrary node i and V_{H}-member j. Thus $B B^{T}$ gives us the number of paths of length 2 from arbitrary node i to arbitrary node j that go through some high-degree node as the middle node. We can do the $B B^{T}$ computation in $O\left((n / r)^{2} r^{2.376}\right)$ time. We then update M to $M=M+B B^{T}$. Since $2 m=$ sum of all degrees $\geq\left|V_{H}\right| d=r d$. Thus $r \leq 2 m / d$. So the computation takes $O\left((n / r)^{2} r^{2.376}\right)=O\left(n^{2} r^{0.376}\right)=O\left(n^{2}(m / d)^{0.376}\right)$.

So now we've covered all cases, M accounts for all possible paths of length 2 going through high-degree or low-degree vertices.
Finally we traverse M and claim the graph is shallow if and only if all non-diagonal entries of M are non-zero. This $O\left(n^{2}\right)$ will be dominated by $O\left(n^{1.45} m^{0.55}\right)$, since $m \geq n$.
Thus total running time is $O\left(m d+n^{2}(m / d)^{0.376}\right)$. We now minimize this bound with respect to d. Setting $m d=n^{2}(m / d)^{0.376}$ gives $d^{*}=n^{1.45} m^{-0.45}$. Substituting back in gives a bound of $O\left(m d^{*}+n^{2}\left(m / d^{*}\right)^{0.376}\right)=O\left(n^{1.45} m^{0.55}\right)$.
2. Write a Spark program to compute the Singular Value Decomposition of the following 10×3 matrix:

```
-0.5529181 -0.5465480 0.009519836
```

```
-0.5428579 -1.5623879 0.982464609
-1.3038629 0.5715549 0.499441144
    0.6564096 1.1806877 0.495705999
-1.2061171 1.3430651 0.153477135
    0.2938439 -1.7966043 0.914381381
-0.2578953 0.2596407 0.815623895
    0.9659582 2.3697927 0.320880634
-0.4038109 0.9846071 0.488856619
    0.6029003-0.3202214 0.380347546
```

Assume the matrix is tall and skinny, so the rows should be split up and inserted into an RDD. Each row can fit in memory on a single machine. Report all singular vectors and values and submit your Spark program.
3. Given a matrix M in row format as an RDD[Array[Double]] and a local vector x given as an Array[Double], give Spark code to compute the matrix vector multiply $M x$.

Solution:

```
x_bc = sc.broadcast(x)
output = M.map(lambda row: np.dot(row, x_bc.value)).collect()
```

4. In class we saw how to compute highly similar pairs of m-dimensional vectors x, y via sampling in the mappers, where the similarity was defined by cosine similarity: $\frac{x^{T} y}{|x|_{2}|y|_{2}}$. Show how to modify the sampling scheme to work with overlap similarity, defined as

$$
\operatorname{overlap}(x, y)=\frac{x^{T} y}{\min \left(|x|_{2}^{2},|y|_{2}^{2}\right)}
$$

(a) Prove shuffle size is still independent of m, the dimension of x and y.
(b) Assuming combiners are used with B mapper machines, analyze the shuffle size.

Solution:

(a) We modify the DIMSUM mapper as follows:

```
Algorithm 1 DIMSUMOverlapMapper \(\left(r_{i}\right)\)
    for all pairs \(\left(a_{i j}, a_{i k}\right)\) in \(r_{i}\) do
        With probability min \(\left(1, \gamma \frac{1}{\min \left(\left\|c_{i}\right\|_{2}^{2},\left\|c_{j}\right\|_{2}^{2}\right)}\right)\)
        emit \(\left((j, k) \rightarrow a_{i j} a_{i k}\right)\)
    end for
```

The shuffle size of this scheme is $O\left(n L \gamma / H^{2}\right)$ where H is the smallest nonzero element of A in magnitude. To show this we start with the expected contribution
from each pair of columns.

$$
\begin{aligned}
& =\sum_{i=1}^{n} \sum_{j=i+1}^{n} \sum_{k=1}^{\#\left(c_{i}, c_{j}\right)} P\left(\text { DIMSUMOverlapEmit }\left(c_{i}, c_{j}\right)\right) \\
& =\sum_{i=1}^{n} \sum_{j=i+1}^{n} \#\left(c_{i}, c_{j}\right) P\left(\text { DIMSUMOverlapEmit }\left(c_{i}, c_{j}\right)\right) \\
& \leq \sum_{i=1}^{n} \sum_{j=i+1}^{n} \gamma \frac{\#\left(c_{i}, c_{j}\right)}{\min \left(\left\|c_{i}\right\|_{2}^{2},\left\|c_{j}\right\|_{2}^{2}\right)} \\
& =\sum_{i=1}^{n} \sum_{j=i+1}^{n} \gamma \frac{\#\left(c_{i}, c_{j}\right)}{c_{i}^{T} c_{i}} \\
& \leq \gamma \sum_{i=1}^{n} \frac{1}{c_{i}^{T} c_{i}} \sum_{j=1}^{n} \#\left(c_{i}, c_{j}\right) \\
& \leq \gamma \sum_{i=1}^{n} \frac{1}{\#\left(c_{i}\right) H^{2}} L \#\left(c_{i}\right) \\
& =\gamma L n / H^{2}
\end{aligned}
$$

The fourth equality comes from assuming WLOG $\left\|c_{i}\right\|_{2}^{2} \leq\left\|c_{j}\right\|_{2}^{2}$.
(b) In the naive case with combiners, each of the B machines will emit at most n^{2} pairs - one for each element in $A^{T} A$. However, without combiners we know that DIMSUM will have a shuffle size of at most $n L \gamma / H^{2}$. Thus the shuffle size is at $\operatorname{most} O\left(\min \left(B n^{2}, n L \gamma / H^{2}\right)\right)$.

