CME 323: Distributed Algorithms and Optimization

Instructor: Reza Zadeh (rezab@stanford.edu)
HW\#4 - Due Thursday, June 6

1. Shallow Graphs For an undirected graph $G=(V, E)$ with n vertices and m edges ($m \geq n$), we say that G is shallow if for every pair of vertices $u, v \in V$, there is a path from u to v of length at most 2 (i.e. using at most two edges).
(a) Give an algorithm that can decide whether G is shallow in $O\left(n^{2.376}\right)$ time.
(b) Given an $n \times r$ matrix A and an $r \times n$ matrix B where $r \leq n$, show that we can multiply A and B in $O\left((n / r)^{2} r^{2.376}\right)$ time. Hint: use the fact that we can multiply two $r \times r$ matrices in $O\left(r^{2.376}\right)$ time.
(c) Give an algorithm that can decide whether G is shallow in $O\left(m^{0.55} n^{1.45}\right)$ time. Hint: consider length-2 paths that go from low-degree vertices and length-2 paths that go through high-degree vertices separately. Use result from part (b).
2. Write a Spark program to compute the Singular Value Decomposition of the following 10×3 matrix:

$$
\begin{array}{rrr}
-0.5529181 & -0.5465480 & 0.009519836 \\
-0.5428579 & -1.5623879 & 0.982464609 \\
-1.3038629 & 0.5715549 & 0.4994411144 \\
0.6564096 & 1.1806877 & 0.495705999 \\
-1.2061171 & 1.3430651 & 0.153477135 \\
0.2938439 & -1.7966043 & 0.914381381 \\
-0.2578953 & 0.2596407 & 0.815623895 \\
0.9659582 & 2.3697927 & 0.320880634 \\
-0.4038109 & 0.9846071 & 0.488856619 \\
0.6029003 & -0.3202214 & 0.380347546
\end{array}
$$

Assume the matrix is tall and skinny, so the rows should be split up and inserted into an RDD. Each row can fit in memory on a single machine. Report all singular vectors and values and submit your Spark program.
3. Given a matrix M in row format as an $\operatorname{RDD}[$ Array[Double]] and a local vector x given as an Array[Double], give Spark code to compute the matrix vector multiply $M x$.
4. In class we saw how to compute highly similar pairs of m-dimensional vectors x, y via sampling in the mappers, where the similarity was defined by cosine similarity: $\frac{x^{T} y}{|x|_{2}|y|_{2}}$. Show how to modify the sampling scheme to work with overlap similarity, defined as

$$
\operatorname{overlap}(x, y)=\frac{x^{T} y}{\min \left(|x|_{2}^{2},|y|_{2}^{2}\right)}
$$

(a) Prove shuffle size is still independent of m, the dimension of x and y.
(b) Assuming combiners are used with B mapper machines, analyze the shuffle size.

