CME 323: Distributed Algorithms and Optimization
Instructor: Reza Zadeh (rezab@stanford.edu)
HW#3 — Due Thursday May 23 11:59pm (on Gradescope)

1. Intro to Spark Download the following materials.

e Slides

e In this question, you will need to use two files, README . md and contributing-to-spark.m
You can get these files from either build usb or Google Colab.

e For Spark, you can either install Spark locally (refer to the instructions on the
Spark Website), or use Google Colab colab link. We have provided the config-
uration in the Colab file. However, Colab currently does not support Scala, the
language used in the slides, so you will need to write Python code to achieve the
same tasks.

Now, answer the following questions.

(a) Checkpoint on slide 11.

Solution

val data = 1 to 10000
val distdata = sc.parallelize (data)
distdata.filter(_ < 10).collect ()

resO: Array[Int] = Array(l, 2, 3, 4, 5, 6, 7, 8, 9)
(b) Checkpoint on slide 55.

Solution

val £ = sc.textFile ("README.md")

val we = f.flatMap(l => l.split ("™ ")).
map (word => (word, 1)).
reduceByKey (_ + _)

wc.filter(_._1 == "Spark").collect ()

res0: Array|[ (String, Int)] = Array((Spark,18))

(¢) Checkpoint on slide 60. Note: slide 59 references the file CONTRIBUTING.md
which is in the provided zip file. Instead, use the file website/getting-started.md


https://stanford.edu/~rezab/classes/cme323/S15/slides/itas_workshop.pdf
https://github.com/databricks/spark-training/blob/master/build_usb.py
https://drive.google.com/drive/folders/10T76TEsx-D06Sy6AJ017-QTU3Y9rO6Gt?usp=share_link
https://spark.apache.org/downloads.html
https://colab.research.google.com/drive/1AGBTf6HxVF1X4Hsg5yGciMKRuCjgiCdG?usp=sharing

Solution

sc.textFile ("README .md") .
union(sc.textFile ("docs/contributing-to-spark.md")) .
flatMap(_.split (" ")).
filter (_ == "Spark").

count ()

20

res2: Long =

2. Write a Spark program to find the least squares fit on the following 10 data points.
The variable y is the response variable, and X1, X2 are the independent variables.

X1
.5529181
.5428579
.3038629
0.6564096
.2061171
0.2938439
.2578953
0.9659582
.4038109
0.6029003
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X2

.5465480
.5623879
.5715549
.1806877
.3430651
.7966043
.2596407
.3697927
.9846071
.3202214
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Yy

.009519836
.982464609
.499441144
.495705999
.153477135
.914381381
.815623895
.320880634
.488856619
.380347546

More precisely, find wy, ws, such that Zgl(le 1; + wa X2; — ;)% is minimized. Re-
port wy, we, and the Root Mean Square Error and submit code in Spark. Analyze
the resulting algorithm in terms of all-to-all, one-to-all, and all-to-one communication

patterns.

Solution

import breeze.linalg.DenseVector

val x1 = Array(-0.5529181, -0.5428579, -1.3038629, 0.6564096, -1.2061171, 0.2938439, -0.2578953, O.
val x_2 = Array(-0.5465480, -1.5623879, 0.5715549, 1.1806877, 1.3430651,-1.7966043, 0.2596407, 2.3¢
val y = Array(0.009519836, 0.982464609 , 0.499441144, 0.495705999 , 0.153477135 , 0.914381381 , 0.81562
val pts_cent = Array(xl, x2, y).transpose

val pts = sc.parallelize (pts_cent) .cache

val w = DenseVector (0.0, 0.0)

val w_bc = sc.broadcase (w)
val step = 0.1
val max_iter = 1000

for (1 <= 1 to max_iter) {



val grad_xl = pts.map(x => 2* (w_bc.value(0)*x(0) + w_bc.value(l)*x(l) - x(2))+*x(0)}.reduce(_+_)

val grad_x2 = pts.map(x => 2* (w_bc.value(0)*x(0) + w_bc.value(l)*x(l) - x(2))+*x(1l)}.reduce(_+_)
w_bc.value(0) = w_bc.value(0) - stepxgrad_xl
w_bc.value(l) = w_bc.value(l) - step*grad_x2

}

Computing each of the gradients requires an all-to-one communication (due to the
.reduce (_+_) ). There are two of these per iteration. Broadcasting the updated
w_bc requires one to all communication.

3. Intro to Map Reduce Assume you are given a typical MapReduce implementation
where you only have to write the Map and Reduce functions. The Map function you
will write takes as input a (key, value) record and returns either a (key, value) record
or nothing. The Reduce function you will write takes as input (key, list of all values for
that key) and returns either a record or nothing. The framework already takes care of
iterating the Map function over all the records in the input file, key-based intermediate
data transfer between Map and Reduce, and storing the returned value of Reduce. For
all the following questions, provide algorithms at the level of pseudocode.

(a) Given as set of records (for example, movie names and ranking), provide a MapRe-
duce algorithm to output the top K movies of the set.

Solution The algorithm is summarized in algorithms [I] and 2]

Algorithm 1: MAP(name, ranking)

1 queue < PriorityQueue();
2 Function MAP(name, ranking):
s | emit((ranking, name));

(b) Suppose you are given an input file which contains comprehensive information
about a social network that has asymmetrical (directed) links, i.e., a network
where users follow other users but not necessarily vice-versa (e.g., Twitter). Each
record in this input file is (userid-a, userid-b), where userid-a follows userid-b
(i.e., points to it). Note that this record tells you nothing about whether or not
userid-b follows userid-a. Write a MapReduce program (i.e., Map function and
Reduce function) that outputs all pairs of userids who follow each other.

Solution The algorithm is summarized in algorithms [3 and [4]

4. Connected Components with MapReduce Finding out the number of connected
components in a graph is a key subroutine in many graph algorithms. Provide and
prove the correctness of a MapReduce algorithm to count the number of connected
components in a graph (represented as an edge list).



Algorithm 2: Reduce(ranking_pair)

1 queue < PriorityQueue();

2 Function Reduce(pair):

3 if queue.size < K then

4 | queue.insert(pair)

5 else

6 min = queue.getMin();

7 if pair.ranking > min then
8 queue.removeMin();

9 queue.insert(pair);

10 end

11 end

12 return queue

Algorithm 3: MAP (userid — a, userid — b)

1 if userid — a < userid — b then

2 ‘ string < “userid — a,userid — b”;
3 else
4 ‘ string < “userid — b, userid — a”;
5 end

Algorithm 4: REDUCE(key, listofvalues)

if sum(values) = 2 then
‘ return key

else
‘ return

end
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Solution This MapReduce algorithm emulates a BFS algorithm, and is summarized
in Algorithm [/} The NeighborSearch (E; L) function refers the the MapReduce
steps summarized in Algorithms |5{and @, with the edge set E given as input, and L (the
list of found nodes) as a parameter. Without loss of generality, we assume that V' = [n],
so the driver can easily select u € V, and v € V, u ¢ L. However, straightforward
modifications to the algorithm can account for the case where the vertex set is not
known in advance.

5. Sampling from multiple streams Suppose we have numerous sub-streams of data
(say Si,...,S,), provide and prove the correctness of an algorithm to generate k ran-
dom samples from the aggregate stream.



Algorithm 5: MAP: Neighbor Search

1 N+ 0;

2 Function M AP((u,v); L):
3 if u € L then

4 | N+ Nu{v}
5 end

6 if v € L then

7 | N+ NuU{u}
8 end

9 for n € N do

10 | emit(l, n)

11 end

Algorithm 6: Reduce: Neighbor Search

1 Function REDUCE(key, [values]):

2 | return unique(values)

Algorithm 7: Count Connected Components

1 count < O;

2 L < {u} random node in G = (V, E);

3 while L # V do

4 if NeighborSearch (E; L) # () then
5 ‘ L <+ LU NeighborSearch(E; L)
6 else

7 count += 1;

8 L+ LU{u}forueV,uglL

9 end
10 end




Solution We note that the solution here is sampling with replacement (as the length
of the stream increases, the difference between with and without replacement becomes
negligible). On each of the substreams, we run k independent copies of the reservoir
sampling algonthm presented in class. We also maintain a counter for each of the
substreams. Let {7’ }] 1.k be the sample generated from S then IP’[ Sl(z)] =4
(this comes from directly applying the result from class). Since each of the rj(-i) are
independent, this generates k elements that are uniformly sampled from the stream
)

Each of these samples {rj(-i)}jzl,._,k is sent to the driver, along with a count n; of the

number of elements S has seen. The driver selects k elements, 1, . . ., t; independently

()} I
from these nk elements, where P[t() = ;"] = ;54—

6. Word Count Shuffle Consider counting the number of occurrences of words in a
collection of documents, where there are only k possible words. Write a MapReduce
to achieve this, and analyze the shuffle size with and without combiners being used
(assuming B mappers are used).

Solution The algorithm is summarized in Algorithms [§and [9] The canonical word-
count example will have a shuffle size equal to sum of the sizes of all documents if
combiners are not used. i.e. if there are n documents of length L then shuffie size is
nlL, where as if we combine, each mapper outputs at most k counts, for a total of Bk

Algorithm 8: MAP(document)

1 for word in document do
2 | return (word, 1)
3 end

Algorithm 9: REDUCE(key, listofvalues)

1 return sum(values)

7. Prefix Sum The prefiz-sum operator takes an array aq,...,a, and returns an array
S$1,...,S, Where s; = qu a;. For example, starting with an array [17 0 5 32]
it returns [17 17 22 54]. Describe (in detail) how to implement prefiz-sum in
MapReduce, where the input is stored as (i,a;). That is, the key is the position in
the array, and the value is the value at that position. Analyze the shuffle size and the
reduce-key space and time complexity.

Solution Intuition: If we compute the partial sums sum(z[0...3]) and sum(z[4...7]),
then we can easily combine these to compute sum(z[0...7]). Using this intuition, we
can split up the input into intervals that fit onto a single machine by emitting keys
(Map step) that hash the input into their assigned interval. For example if we have R

6



reducers, input <i, ai> is mapped to ([iR/n], (i,ai)). Then the reducers compute the
partial sum for each of their assigned intervals. The result will be R partial sums.

Since the number of reducers can’t be too large, we can fit R numbers into memory. So
we use a second Map to put the sum of each interval into the memory of all machines.
Knowing the sum of all previous intervals, we can compute the partial sum from al
for all intervals following the second Reduce.

At worst the shuffle size of the first MapReduce is n if the a; with the same index are
not stored on the same machine. If the array is already stored in intervals then the
first MapReduce can have zero shuffle size. The shuffle size of the second MapReduce
is R? as each machine sends the sum of its interval to every other machine.

The reduce-key space is the maximum amount of data assigned to a single key. In the
first MapReduce the reduce-key space is n/R and in the second, the reduce-key space
is R.

The time complexity of the first MapReduce is O(n/Rlog(n/R)) as each machine sorts
its interval and then iterates over it once computing the (partial) prefix-sum. The
complexity of the second interval is O(n/R) as each machine computes the sum of all
the intervals before it and carries out a single pass over its own interval.



