
CME 323: Distributed Algorithms and Optimization
Instructor: Reza Zadeh (rezab@stanford.edu)

TA:Alex Yang (yangzj@stanford.edu)

HW#2 – Due Thursday May 9 11:59pm (on Gradescope)

1. List Prefix Sums As described in class, List Prefix Sums is the task of determining
the sum of all the elements before each element in a list. Let us consider the following
simple variation.

• Select each element from the list randomly and independently with probability
1/ log n and add it to a set S. Add the head of the list to this set, and mark all
these elements in the list.

• Start from each element s ∈ S, and in parallel traverse the lists until you find
the next element in S (by detecting the mark) or the end of the list. For s ∈ S,
call this element found in this way next(s). While traversing, calculate the sum
from s to next(s) (inclusive of s but exclusive of next(s)), and call this sum(s).

• Create a list by linking each s ∈ S to next(s) and with each node having weight
sum(s).

• Compute the List Prefix Sums on this list using pointer jumping. Call the result
prefixsum(s).

• Go back to the original list, and again traverse from each s to next(s) starting
with the value prefixsum(s) and adding the value at each node to a running
sum and writing this into the node. Now all elements in the list should have the
correct prefix sum.

Analyze the work and depth of this algorithm. These should both be given with high
probability bounds.

2. Shortest Path for Weighted Directed Graph Consider a directed graph G =
(V,E) with non-negative weights ω : E → R+. The task is to develop an algorithm to
efficiently find the shortest paths from the source s ∈ V to any other vertex v ∈ V , i.e.

p∗(v) = argminp valid

np∑
i=1

ωi(ui, ui+1),

where a valid path from source s to v is a sequence p = (u0, u1, . . . , unp) satisfying:

• u0 = s;

• unp = v;

• (ui, ui+1) ∈ E for i = 0, . . . , np.

Now assume that the operation of finding neighbors of a vertex can be performed in
constant time and constant depth (both O(1)). Design an algorithm that achieves
O(nm) work and O(n logn) depth. (n = |V | and m = |E|.)



3. Singular Value Decomposition for SPSD Matrices Given a symmetric positive
definite matrix A ∈ Rn×n, in this problem we explore how to efficiently compute its
singular value decomposition A = UTSU , where U is orthogonal matrix, S is diagonal.
Here we assume the singular values satisfy λ1 > λ2 > · · · > λn.

(a) Instead of directly performing QR-iteration on A, we want to first convert ma-
trix A to a symmetric tridiagonal matrix using Householder reflection, i.e. con-
structing an orthogonal matrix Q0, s.t. T = QT

0AQ0 is symmetric tridiagonal.
Give a parallel algorithm to solve this problem, and analyze its work and depth.

(Hint: Householder reflection H = In − 2
(eα−eβ)(eα−eβ)

T

(eα−eβ)T (eα−eβ)
projects eα to eβ where

eα = α/||α||2 and eβ = β/||β||2. )
(b) Now we perform QR-iteration on symmetric tridiagonal matrix T to achieve SVD

for T using Givens rotation. Obviously, if we get the SVD of T, i.e. S = Q̃TTQ̃,
then we have S = (Q0Q̃)TAQ0Q̃, which is the SVD of A. Now, let’s explore the
following algorithm:

function QR-Iteration for symmetric tridiagonal matrix(s[1 . . . n])
Let Q0 ← In, T0 ← T
for t = 1 to T do

Let Qt ← Qt−1, Tt ← Tt−1

for k = 1 to n− 1 do
Let α← Tt[k : k + 1, k], (c, s)T ← α/||α||2
Gk ← Givens(k, c, s)
Tt ← Gk ∗ Tt ∗GT

k

Qt ← Gk ∗Qt

end for
end for
return TT , QT

end function

Here, the matrix representation of Givens Rotation is

Givens(k, c, s) =


Ik−1 0 0

0

[
c s
−s c

]
0

0 0 In−k−1

 .

Analyze the work and depth of this algorithm, then compare it with part (a).
Write a few sentences about your findings.

4. Stochastic Gradient Descent

(a) In class we proved that gradient descent on L-smooth functions is guaranteed
to decrease the function value at each iteration. Stochastic gradient descent, on
the other hand, does not have the same guarantee. Provide an example where
stochastic gradient descent does not produce a descent step. Specifically, find a
function f(x) =

∑m
i=1 fi(x), and an iterate x0 such that for all step sizes, there

exist i such that f(x1) > f(x0) (where x+ 1 := x0 − α∇fi(x)).
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(b) This exercise will guide you through the convergence proof of SGD. As a reminder,
we are proving that if there exists a constant G such that E[∥∇fi(x)∥2] ≤ G2 and
f(x) is µ-strongly convex. Then, with step-sizes γk =

1
µk
, we have

E[∥xk − x∗∥2] ≤
max{∥x1 − x∗∥2 , G

2

µ2 }
k

.

• Using strong convexity, prove that

⟨∇f(xk)−∇f(x∗), xk − x∗⟩ = ⟨∇f(xk), xk − x∗⟩ ≥ µ ∥xk − x∗∥2

• Apply the previous step, to express E[∥xk+1 − x∗∥2] in terms of E[∥xk − x∗∥2],
γk, G, and µ.

• Prove the convergence of SGD using induction.

5. HOGWILD! This exercise will provide examples applying the main theorem of HOG-
WILD!. Recall that in HOGWILD!, the objective function we want to minimize is :

f(x) =
∑
e∈E

fe(xe)

where we define the hyperedge e to be the subset of variables that fe depends on.
Figure 1 depicts such a graph. Then, if we denote the average degree of the conflict
graph as ∆C , convergence is still guaranteed if the core delay is less than τ ≤ n

2∆C
(i.e.,

no more than τ samples are being processed while a core is processing one).

Figure 1: The function-variable and conflict graph for sparse functions.

• Graph Cuts In graph cuts problems, we are given a sparse matrix W which
indexes similarity between node. We want to match each node to a list of D
classes i.e., we want assign a vector xi ∈ {v ∈ RD|

∑D
j=1 vj = 1, vj ≥ 0} that solve

the following optimization problem.

minimize
x

∑
(u,v)∈E

wuv ∥xu − xv∥1

subject to xu ∈ {v ∈ RD|
D∑
j=1

vj = 1, vj ≥ 0}.
(1)
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Prove that
∆C

n
= O (Avg. deg.)

6. Implement logistic regression using tensorflow. Use the following code to gen-
erate train and test data. Note that we have set seed (using ”random state=42”). Use
cross-entropy loss and gradient descent optimizer with a learning rate of 0.01. Use
batch size of 100, and run for 500 steps. Report the accuracy on test set.

from s k l e a rn . da ta s e t s import mak e c l a s s i f i c a t i o n
from s k l e a rn . mode l s e l e c t i on import t r a i n t e s t s p l i t
import matp lo t l i b . pyplot as p l t

# Generate data
X data , y data = mak e c l a s s i f i c a t i o n ( n samples=200 , n f e a t u r e s =2,
n redundant=0, random state=42)

# Sp l i t i n t o t r a i n and t e s t s e t s
X train , X test , y t ra in , y t e s t = t r a i n t e s t s p l i t ( X data , y data ,
t e s t s i z e =0.2 , random state=42)

# Plot t r a i n i n g data
p l t . s c a t t e r ( X tra in [ : , 0 ] , X tra in [ : , 1 ] , c=y t r a i n )
p l t . show ( )
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