
CME 323: Distributed Algorithms and Optimization
Instructor: Reza Zadeh (rezab@stanford.edu)

TA: Alex Yang (yangzj@stanford.edu)

HW#1 – Solutions

1. The Karatsuba algorithm multiplies two integers x and y. Assuming each has n bits
where n is a power of 2, it does this by splitting the bits of each integer into two halves,
each of size n/2. For any integer x we will refer to the low order bits as xl and the
high order as xh. The algorithm computes the result as follows:

function km(x, y, n)
if n = 1 then

return x× y
else

a← km(xl, yl, n/2)
b← km(xh, yh, n/2)
c← km(xl + xh, yl + yh, n/2)
d← c− a− b
return (b · 2n + d · 2n/2 + a)

end if
end function

Note that multiplying by 2k can be done just by shifting the bits over k positions.

(a.) Assuming addition, subtraction, and shifting take O(n) work and O(n) depth
what is the work and depth of km?

Solution Each invocation of km with n-bit integers results in km being called
three times (in parallel), each with input size n/2. We are told that n = 2k for
some k ∈ Z+. Our recursion bottoms out when n = 1, in which case we perform
a single-digit multiply in constant time. Notice that the number of single-digit
multiplies, i.e. the number of times we bottom-out in our recursion and hit our
base-case, is given by 3k, where each multiply takes O(1) work.

Let W (n) define the total work of our algorithm. Since additions, subtractions,
and bit-shifts are assumed to require O(n) work, we may express

W (n) = 3W
(n
2

)
+ αn

for some constant α ∈ R+. Using the Master Theorem, 1 we see that W (n) =
Θ(nlog2 3).

With respect to Depth, let D(n) denote the depth of our algorithm. We know
that addition, subtraction, and shifting also require O(n) depth. Notice that the
recursive calls to km are made in parallel and therefore share no dependencies.
Hence

D(n) = D(n/2) + αn,

1Here, a = 3, b = 2, hence logb a = log2 3. Then, f(n) = αn = O(n). Thus c = 1 < log2 ≈ 1.6. Case 1.

for some α ∈ R. Using the Master Theorem,2 we see that D(n) = Θ(n).

(b.) Assuming addition, subtraction, and shifting take O(n) work and O(log n) depth
what is the work and depth of km?

Solution Work remains the same. But now our Depth is given by

D(n) = D(n/2) +O(log n).

2. Suppose a square matrix is divided into blocks:

M =

[
A B
C D

]
where all the blocks are the same size. The Schur complement of block D of M is
S = A−BD−1C. The inverse of the matrix M can then be expressed as:

M−1 =

[
S−1 S−1BD−1

−D−1CS−1 D−1 +D−1CS−1BD−1

]
This basically defines a recursive algorithm for inverting a matrix which makes two
recursive calls (to calculate D−1 and S−1), several calls to matrix multiply, and one
each to elementwise add and subtrace two matrices. Assuming that matrix multiply has
work O(n3) and depth O(log n) what is the work and depth of this inversion algorithm?

Solution Each iteration of the recursive matrix inversion algorithm involves two
recursive calls, each on a square matrix whose side-length is half as large. The following
steps in the algorithm require matrix multiplies which dominate the work and depth
of elementwise operators.3

Therefore, we set up our recurrence for work,

W (n) = 2W
(n
2

)
+ αn3,

for some α ∈ R+. Using the Master Theorem4 , we conclude that W (n) = O(n3).

With regard to the depth of the algorithm, notice that D−1 required to compute S−1,
i.e. these operations may not be done in parallel. Hence

D(n) = 2D
(n
2

)
+O(log n).

We fall into case 1 of the Master Theorem, since a = b = 2 and f(n) = O(log n) =
O(
√
n),5 Thus, D(n) = O(n).

2Here, a = 1, b = 2, hence logb a = log2 1 = 0. So f(n) = αn = Ω(n). This places us into Case 3. We
check that f(n/2) ≤ kf(n) for some constant k < 1 – i.e. choose 1/2 < k < 1, then αn/2 ≤ kαn satisfied.

3Specifically, the element-wise add or subtract requires n2 independent additions. The work is clearly
O(n2). Notice that depth O(1), since with p = n2 processors we can perform exactly one of the n2 operations
on each processor in constant time.

4a = 2, b = 2, so logb a = 1; f(n) = O(n3) implies c > logb a, i.e. Case 3. We check 2f(n/2) ≤ kf(n) for
some k ∈ (0, 1), i.e. let k = 1/2 then 2αn3/8 = αn3/4 ≤ αn3/2.

5To see why, note that log x < x for all x > 0. Then, log x = 2 log(
√
x) < 2

√
x.

2

3. Describe a divide-and-conquer algorithm for merging two sorted arrays of lengths n
into a sorted array of length 2n. It needs to run in O(n) work and O(log2 n) depth.
You can write the pseudocode for your algorithm so that it looks like your favorite
sequential language (C, Java, Matlab, . . .), but with an indication of which loops or
function calls happen in parallel. For example, use parallel for for a parallel for
loop, and something like:

parallel {
foo(x,y)
bar(x,y)

}
to indicate that foo and bar are called in parallel. You should prove correctness at
the level expected in an algorithms class (e.g. CME305 or CS161).

Solution Notice that we may find the median of a sorted array in O(1) time. Let
n = |A|. If n odd, then the median element is uniquely determined by index (n− 1)/2
(where we index starting from 0). If n even, there are two medians with indices at n/2
and n/2− 1.

Below, ⪯ denotes the element-wise inequality operator. In our pseudo-code, we index
an array just like arrays are sliced in python, e.g. a[1:j] means that we start at the
second element and take all elements up to but not including index j.

function ParallelMerge(A,B)
Input: Sorted arrays A,B, where |A| = n and |B| = m
Output: Merged and sorted array C of length n+m

if n ≤ 1 and m ≤ 1 then
return A and B in sorted order

end if
if m mod 2 == 1 then

j ← (m− 1)/2
else

j ← m/2
end if
i← max index of corresponding element in A such that A[0 : i] ⪯ B[j : m]
In Parallel, Do:

a← Merge(A[0 : i], B[0 : j])
b← Merge(A[i : n], B[j : m])

End Parallel
return concatenate(a, b)

end function

Notice that when j defined as above in our algorithm,

max{a[0:i],b[0:j]} ≤ min{a[i:n],b[j:m]}

and that a and b are sorted. This is why after our recursive calls return a and b, we

3

claim that we may simply concatenate the result and maintain our sort-guarantee. We
claim that this algorithm has work O(n) and depth O(log2 n).

In the recursion tree at depth d, there are 2d calls made to the merge procedure,
denoted by Merge(Ad,i, Bd,i) for i = 1, 2, . . . , 2d. Each of the Bd,i are of size exactly

m/2d, and note that the size of Ad,i’s are such that
∑2d

i=1 |Ad,i| = n.

Searching for the element in A such that A[0 : i] ⪯ B[0 : n/2] using a binary search
on our sorted array A requires O(log n) work on a single processor. Therefore, we see
that total work for taking two sorted arrays of size n is given by

W (n, n) =

log2 n∑
d=1

 2d∑
i=1

log |Ad,i|+ c

 for some constant c

But note that since log x concave, so by Jensen’s Inequality, This leads to the Arithmetic-
Geometric Mean Inequality, with the consequence that for a set of n inputs∑n

i=1 log xi

n
≤ log

(∑n
i=1 xi

n

)
.

From our observations above regarding the size of Ad,i’s, and since 2d ≥ 1 for all
d ∈ Z+, we see that∑2d

i=1 log(|Ad,i|)
2d

≤ log
(n

2d

)
=⇒

2d∑
i=1

log(|Ad,i|) ≤ 2d log
(n

2d

)
Hence we see that

W (n, n) ≤
logn∑
d=1

(
2d log

(n

2d

)
+ c
)

≤
logn∑
d=1

2d(log n− d) + c log n = log n

logn∑
d=1

2d −
logn∑
d=1

2dd+ c log n

= (2(n− 1)) log n− 2(n log n− n+ 1) + c log n

= O(n).

With regard to the depth of our algorithm, note that each recursion level has depth
O(log n), due to our binary-search bottleneck; note as well that the recursion stops
whenever the elements of Ad,i become smaller than 2, which happens by recursion level
O(1 + ⌈log2 n⌉). Hence we see that depth is O(log2 n).

4

Remark on Concatenate You may have wondered why we assume that concatenate
takes constant time. Realize that if we were to naively appending the elements of one
array to another, this would require O(n) work, since we must copy or move each
element from one address in memory to another. Notice, however, that each element
may be moved independent of other elements, hence depth is O(1).

But we can do much better thank this. We can bring work down to O(1) while still
maintaining unit depth. There are two ways to do this. The first way is to manage our
memory directly so that the two input arrays are placed contiguously in our random
access memory. The second is to simply use an if statement whenever accessing
elements in our output array. This if statement costs unit work, and hence we can
still maintain our guarantee of constant time access to any element in the output array.

Alternative Solution There is a way to find the median of the union of two sorted
arrays in log n time on one-machine. Hence this sub-routine has log n work (and depth,
as written). It can be proven that this can be done. After which, we can see that

W (n) = 2W
(n
2

)
+O(log n),

D(n) = D(n/2) +O(log n).

Using the Master Theorem, the results show W (n) = O(n) and D(n) = O(log2 n).

4. Given a sequence of n real numbers s = (s1, ..., sn), the maximum contiguous sub-
sequence sum problem is to find a contiguous subsequence of s such that its sum is
maximal, i.e.

F (s) = max
1≤i≤j≤n

j∑
k=i

sk

(a) Consider the following algorithm running in parallel manner, what is the work
and depth of it? (Hint: be aware of the depth and work of max and sum)

function MaxContiguousSubsequenceSum(s[1 . . . n])
for 1 ≤ i ≤ j ≤ n do

Compute SubSum(i, j) =
∑j

k=i sk
end for
return max({SubSum(i, j)}1≤i≤j≤n)

end function

Solution The given algorithm can be divided into two dependent parts, 1. Com-
pute the sum of every subsequence s[i, i+ 1, ..., j]; 2. find the maximum of those
subsum results. It’s easy to see the total depth and work are the sum of the two
parts from DAG. To move forward, we recall the work and depth of max and sum
operation in parallel manner

Wsum(n) = O(n), Wmax(n) = O(n)

Dsum(n) = O(logn), Dmax(n) = O(logn).

5

Clearly, the sum of subsequences SubSum(i, j) can be computed in parallel, thus
the depth for this part is just the maximum of each job SubSum(i, j), which is

Dpart 1 = max
1≤i≤j≤n

Dsum(j − i) = O(logn).

While the work is the sum of all SubSum(i, j), we have

Wpart 1 =
∑

1≤i≤j≤n

Wsum(j − i) =
n∑

i=1

n∑
j=i

O(j − i) = O(n3).

The depth and work for the second part is quite obvious. By using the fact that∑n
i=1

∑n
j=i = n ∗ (n+ 1)/2, we get

Wpart 2 = Wmax(n(n+ 1)/2) = O(n2)

Dpart 2 = Dmax(n(n+ 1)/2) = O(logn)

Thus, the depth and work in total is

W = Wpart 1 +Wpart 2 = O(n3)

D = Dpart 1 +Dpart 2 = O(logn)

(b) Give an algorithm to solve this problem that runs in O(n log n) work and O(log2n)
depth. Give a short proof about its work and depth. (Hint: Divide and Conquer)

Solution We consider the following divide and conquer algorithm

function MCSSDivideAndConquer(s[1 . . . n])
if n is 1 then

return s[1]
else

L,R← s[1 . . . n/2], s[n/2 + 1 . . . n]
mL ←MCSSDivideAndConquer(L)
mR ←MCSSDivideAndConquer(R)
SuffL,PrefR ← SuffixSum(L),PrefixSum(R)
mA = max(SuffL) + max(PrefR)
return max(mL,mA,mR)

end if
end function

First, we prove the correctness of the above algorithm. For trivial case where
n = 1, the algorithm produces correct result. For n > 1, L and R are both
non-empty. Let s[i . . . j] be the contiguous subsequence of s that has the largest
sum. There are three cases to consider:

6

i. Both i and j belong to L.

ii. i is in L but j is in R.

iii. Both i and j belong to R.

For cases 1 and 3, by induction, we must have mL ≥ mR (mR ≥ mL), hence
yielding the correct result. For case 2, we assert that s[i, . . . , n/2] is the subse-
quence with the maximal suffix sum in s[1 . . . n/2], while s[n/2 + 1 . . . j] has the
maximal prefix sum in s[n/2+1 . . . n]. Otherwise,

∑j
k=i sk would not be maximal.

Therefore,

SuffL =

n/2∑
k=i

sk,

PrefR =

j∑
k=n/2+1

sk.

Thus, mA =
∑j

k=i sk is the correct result.

Regarding the depth and work, we have

W (n) = 2W (n/2) +WPrefixSum(n/2) +WSuffixSum(n/2) + 2Wmax

= 2W (n/2) +O(n)

D(n) = D(n/2) + max(DPrefixSum +DSuffixSum) +Dmax(n)

= D(n/2) +O(logn)

By the Master Theorem, W (n) = O(n logn) and D(n) = O(log2 n).

5. In this problem, we’ll look at how fast the maximum of a set of n elements can be
computed when allowing for concurrent writes. In particular we allow the arbitrary
write rule for “combining” (i.e. if there are a set of parallel writes to a location, one
of them wins). Show that this can be done in O(log log n) depth and O(n) work.

(a.) Describe an algorithm for maximum that takes O(n2) work and O(1) depth (using
concurrent writes).

Solution For each element xi, 1 ≤ i ≤ n, we associate a bit initialized to have
unit value. Notice that there are n bits to be initialized, hence work is O(n) and
depth is O(1) since bits may be initialized independently.

For each pair of elements xi, xj, i ≤ j, we make a comparison in parallel. Notice

that the work is
(
n
2

)
= n(n−1)

2
= O(n2), and the depth is 1, since each of the

(
n
2

)
comparisons may be computed independently. We use p =

(
n
2

)
processors, and for

each comparison we attempt to over-write bi = 0 if xi < xj and bj = 0 if xj < xi,
i.e. if we can definitively say that an element is smaller than some other element
in our input, its associated bit gets set to 0. This 0 encodes that the element is
not a maximum.

7

Notice that we may end up with two processors writing to the same location in
memory at the same time. However, notice that in our algorithm, we only at
tempt to overwrite a bit if we turn it off. Hence we may allow arbitrary writes
in the event of conflict, since all of the writes are trying to accomplish the same
thing.

Notice that all bits whose associated value is 1 at the end of this process must have
the same value, for if not we get a contradiction: fix attention to two such values;
notice that since they have different values, they cannot be the same element,
hence i ̸= j, and thus at some-point in our algorithm they were considered. But
if the element had different values, exactly one of them should have been turned
off. Once a bit turns off, it never turns on again. Since we assume both associated
bits have value 1, this is a contradiction.

Now, we need to return our result. Notice that if we were to naively loop through
our bit sequence looking for a bit which is turned on, that this would take O(n)
time since there is no guarantee where the maximal element lies in the array.
Instead, assign each of our n bits to a particular processor. In constant time,
check whether the bit turned on. If it is, fetch the corresponding entry from the
array in unit time and write it to output address in unit time. Although we do
not have unit depth, we have a constant depth in our DAG which is not a function
of n. Hence T∞ = O(1) for this algorithm.

Notice that by our argument in the previous paragraph, any writes which are
concurrently attempted to output are all trying to write the same value, so again
the arbitrary write rule causes no harm.

(b.) Use this to develop an algorithm with O(n) work and O(log log n) depth. Hint:
use divide and conquer, but with a branching factor greater than 2.

Solution We use a Divide-And-Conquer algorithm with a branching factor of
n1/3. That is, we divide the array into n1/3 blocks each of size n2/3 elements,
and recursively find their maximum. Notice that the recursion bottoms-out when
n ≤ 2. From the max elements of each of the n1/3 blocks, compute the max using
our brute-force parallel algorithm described in part (A), requiring O(n2) work.
Then, we see that,

W (n) = n1/3W (n2/3) +O
(
(n1/3)2

)
.

For depth, notice that the recursive calls from divide-and-conquer may be made in
parallel, and the base-case (where we apply algorithm from part (a)) only requires
O(1) depth. So,

D(n) = D(n1/3) +O(1).

Notice that we can not use the Master Theorem because in each recursive call we
divide our input by 3

√
n.

8

Solving recurrence relation for depth We first solve the recurrence relation
for depth. We see that we have a constant amount of depth for each level of
recursion, so we just need to solve for the number of recursion levels needed. We
know D(2) = O(1) (the recursion bottoms out when n ≤ 2), so we use this fact
to solve for the number of levels.

n1/3k = 2 ⇐⇒ 1

3k
log(n) = log(2) ⇐⇒ log(n)

log(2)
= log2(n) = 3k =⇒ k = log3 log2(n)

We have constant depth for each level, so in total depth is O(log3 log2(n)) =
O(log log(n)).

Solving recurrence relation for work Now we solve the work recurrence
relation. We may use a similar technique for finding the number of levels in
the recursion tree, again using the fact that W (2) = O(1), and we get k =
log3/2 log2(n) as the number of levels. However, we do not have a constant amount
of work at each level, so we need to un-roll the relation some.

W (n) = n1/3W (n2/3) +O(n(1/3)2)

= n1/3
[
(n2/3)1/3W

(
n(2/3)2

)
+O

(
n(2/3)2

)]
+O(n(1/3)2)

= n1/3

[
(n2/3)1/3

[
(n(2/3)2)1/3W (n(2/3)3) +O(n(2/3)3)

]
+O(n(2/3)2)

]
+O(n(1/3)2)

= O(n2/3) + n1/3O(n(2/3)2) + n1/3(n2/3)1/3O(n(2/3)3) + n1/3(n2/3)1/3(n(2/3)2)1/3O(n(2/3)4) + . . .︸ ︷︷ ︸
log3/2 log2(n) terms

We now have a series where each summand a product of terms.6 We recognize a
pattern, and combine terms

O(n(2/3)1) + n1/3O(n(2/3)2) + n1/3(n(2/3)1)1/3O(n(2/3)3) + n1/3(n2/3)1/3(n(2/3)2)1/3O(n(2/3)4) + . . .

=

log3/2 log2(n)∑
j=1

(
j−2∏
i=0

(n(2/3)i)1/3

)
O(n(2/3)j)

Now, we simplify algebra.7

(
n(2/3)i

)1/3
= n

1
3(

2
3)

i

=⇒
j−2∏
i=0

(
n(2/3)i

)1/3
= n

1
3

∑j−2
i=0 (2

3)
i

= n
1
3

1−(23)j−1

1− 2
3 = n1−(2

3
)j−1

So,

6We caveat our notation: n(2/3)i = n2i/3i ̸= (n2/3)i = n2i/3.
7Recall for any geometric series with x ∈ R, that

∑k
i=0 x

i = 1−xk+1

1−x .

9

W (n) =

log3/2 log2(n)∑
j=1

(
j−2∏
i=0

(n(2/3)i)1/3

)
︸ ︷︷ ︸

n1−(23)j−1

O(n(2/3)j) =

log3/2 log2(n)∑
j=1

O
(
n1−(2

3
)j−1+(2

3
)j
)

=

log3/2 log2(n)∑
j=1

O
(
n1−(2

3
)j−1(1− 2

3)
)

=

log3/2 log2(n)∑
j=1

O

(
n

3j−2j−1

3j

)

=

log3/2 log2(n)∑
j=1

O
(
n1−(2/3)j/2

)

=

log3/2 log2(n)∑
j=1

O(n)

O(n(2/3)j/2)

= O(n)

We claim that the last equality holds. To see this, for given n, let k = log3/2 log2(n).

Let δ = (2/3)(k−1)/2 > 0. We may re-write our equation for work as

W (n) =

log3/2 log2(n)∑
j=1

O(n)

O(n(2/3)j/2)

=
O(n)

O(n(2/3)k/2)
+

k−1∑
i=1

O(n)

O(n(2/3)i/2)

=
O(n)

O((n(2/3)k)1/2)
+

k−1∑
i=1

O(n)

O(n(2/3)i/2)

=
O(n)

O((2)1/2)
+

k−1∑
i=1

O(n)

O(n(2/3)i/2)

≤ O(n) + (k − 1)
O(n)

O(n(2/3)(k−1)/2)

= O(n1−k/3) +O
(
(log log n)n1−δ

)
= O(n)

6. Interval Scheduling Problem Given a set of n tasks with start time and finish time
for each task, T = {(s1, f1), (s2, f2), . . . , (sn, fn)}, we want to find the largest subset
S ⊆ {1, 2, ..., n} such that for any pair i, j in S, the intervals (si, fi) and (sj, fj) do
not overlap. Here we assume si < fi holds for any task, which means every task takes
positive time to finish. Design a greedy algorithm to solve this problem, and prove

10

that the resulting schedule is optimal.

Solution First, we present the greedy algorithm for solving the interval scheduling
problem:

function IntervalScheduling(T)
T ← sorted(T, key = lambda x : x[1])
S ← {}
fprev ← −∞
for (si, fi) in T do

if si ≥ fprev then
S.add ((si, fi))
fprev ← fi

end if
end for
return S

end function

Optimality proof: To prove the algorithm gives optimal scheduling, we will prove
that for any feasible scheduling Sarb = {(sk1 , fk1), . . . (skm , fkm)}, it must hold that
|Sarb| ≤ |SG|, where SG is the result given by the above Greedy Algorithm.

Suppose for SG = {(sG1 , fG1), . . . (sGl
, fGl

)}, there exists some feasible scheduling
Sarb = {(sk1 , fk1), . . . (skm , fkm)} such that |Sarb| > |SG|. Here, the tasks are non-
overlapping and ordered increasingly, i.e.

sG1 < fG1 ≤ sG2 < fG2 ≤ · · · ≤ sGl
< fGl

sk1 < fk1 ≤ sk2 < fk2 ≤ · · · ≤ skm < fkm .

According to the greedy algorithm, (sG1 , fG1) is the first element in the sorted task set
T , implying fG1 ≤ fi for ∀(si, fi) ∈ T . Therefore, we must have fG1 ≤ fk1 .

Note that by assumption we have |SG| = l < m = |Sarb|, there must exist some
(sGj

, fGj
) which has the largest index such that fGi

≤ fki .

If (sGj
, fGj

) is the last element in SG, i.e. j = l, then according to the greedy algorithm,
there isn’t any task simultaneously holds the two properties: 1. si ≥ fGl

; 2. fi ≥ fGl
.

Otherwise, there must exist some task comes later than (sGl
, fGl

) and has the property
that si ≥ fprev = fGl

, which implies it would be added to SG, contradict to the
statement (sGj

, fGj
) is the last element in SG.

If (sGj
, fGj

) is not the last element in SG, then we have fGj
≤ fkj and fkj+1

< fGj+1
.

Therefore we have

fGj
≤ fkj ≤ skj+1

< fkj+1
< fGj+1

,

fGj
≤ skj+1

, fkj+1
< fGj+1

.

11

So after (sGj
, fGj

) added to SG by greedy algorithm, (skj+1
, fkj+1

) comes earlier than
(sGj+1

, fGj+1
) and can be added to SG if fprev = fGj

. The fact that there’s no task
between (sGj

, fGj
) and (sGj+1

, fGj+1
) implies (skj+1

, fkj+1
) is not included into SG, thus

fprev ̸= fGj
. This is only possible if there’s been some other task added into SG before

(skj+1
, fkj+1

), thus before (sGj+1
, fGj+1

). This contradicts to (sGj+1
, fGj+1

) is the next
task added to SG after (sGj

, fGj
).

Hence for any feasible scheduling Sarb = {(sk1 , fk1), . . . (skm , fkm)}, it must hold that
|Sarb| ≤ |SG|. This shows the optimality of the greedy algorithm.

7. Solving Linear Systems

Lower Triangular Systems Consider the task of solving the linear system Ax = b
where we assume A is lower triangular. A popular method for solving Ax = b is forward
substitution. The forward substitution algorithm can be represented as the following
series of serial updates:

x1 ← b1/a11
for i = 2, . . . , n do

xi ←
(
bi −

∑i−1
j=1 lijxj

)
/aii

end for

(a) What is the computation complexity of the forward substitution algorithm?

Solution At iteration k, the work is O(k). So the total work is O(
∑n

k=1 k) =
O(n2)

The parallel forward substitution algorithm operates by parallelizing the serial
forward substitution algorithm. Note that the yj updates can all be executed in
parallel.

x1 ← b1/a11
for i = 2, . . . , n do

xi ← (bi − yi)/aii
for j = i+ 1, . . . , n do

yj ← aj1x1 + . . .+ ajixi

end for
end for

(b) Construct the DAG representing the parallel forward substitution algorithm.
What is the depth of the DAG?

Solution At iterations k, updating yj for j > k can all be completed in parallel
and thus have O(1) depth. Updating xk also has O(1) depth so the total depth
is O(n)

Tridiagonal Systems We now consider solving the system Ax = b where A is tridi-
agonal. Explicitly, aij = 0 if |i − j| ≥ 2. Note that this is equivalent to solving the

12

following system of linear equations:

g1x1 + h1x2 = b1 (1)

fixi−1 + gixi + hixi+1 = bi, i = 2, . . . , n− 1 (2)

fnxn−1 + gnxn = bn (3)

where gi are the diagonal elements of A, fi the entries below the diagonal, and hi

the entries above the diagonal. The idea behind even-odd reductions is to recursively
reduce the above system to one of half the size. Explicitly, if none of the diagonal
entries are zero, we can solve for each xi in terms of xi−1 and xi+1. If we do this for
all odd i, and substitute the expression back in, we obtain a system on just the even
indexed variables.

(a) Using the above system of equations, derive a tridiagonal system of equations on
just the even indexed variables.

Solution For simplicity, we let xj = 0 for j ≤ 0 and j ≥ n+1 so we can account
for the edge cases. Solving for xi in (2) we obtain

xi =
1

gi
(bi − fixi−1 − hixi+1)

. We plug this back into (2) to get

fi
gi−1

(bi − fi−1xi−2 − hi−1xi) + gixi +
hi

gi+1

(bi+1 − fi+1xi − hi+1xi+2) = bi

This simplifies to

−
(
fifi−1

gi−1

)
xi−2+

(
gi −

hi−1fi
gi−1

− hifi+1

gi+1

)
xi−

(
hihi+1

gi+1

)
xi+2 = bi−

fi
gi−1

bi−1−
hi

gi+1

bi+1

(4)

(b) What is the computational complexity of computing the coefficients of the reduced
system?

Solution Computing the coefficients on the left hand side of (4) requires 8
multiplies and 2 sums. Computing the coefficient on the right hand side of (4)
requires 2 multiplies and 2 sums. Each of the multiplies can be completed in
parallel, while the sums require the results of the multiplications. This results
in a total of 14 operations (work = O(1) and depth = O(1)) to compute one
instance of (4). n

2
of these equations make up the reduced tridiagonal system

of equations (each of these equations can be computed in parallel). Thus, the
reduction requires O(n) work and O(1) depth.

The above procedure can be recursively applied until the problem is reduced to a
single equation. Then we work backwards to solve for the value of the eliminated
variables.

(c) What is the computational complexity of solving for the eliminated variables?

13

Solution If we cache the coefficients computed during the reduction phases, we
do not need to recompute them during the steps where we back solve for the
reduced variables. For the backsolve, we need to solve an equation of the form

c−1xi−2k + c0xi + c1xi+2k = b̃

for xi where all variables and constants besides xi are known. This can be executed
in O(1) depth and O(1) work. There are n

2
such equations (to recover n

2
unknowns

from n
2
knowns).

(d) Construct the DAG representing this algorithm.

Solution Figure depicts the even-odd reduction for n = 8. At the first stage,
variables x1, x3, x6, and x8 are eliminated using equation (4). The algorithm
recursively elliminates variables until only x8 remains and is evaluated. The re-
maining variables are recursively evaluated until all variables have been solved
for.

1 2 3 4 5 6 7 8

2 4 6 8

4 8

8

4 8

2 4 6 8

1 2 3 4 5 6 7 8

(e) What is the runtime of the even odd reduction algorithm on Θ(n) processors?
From the previous parts, we conclude that the depth of this algorithm isO(log2(n))

so T∞ = O(log2(n)). We now calculate T1. T1 = O(
∑log2 n

k=1
n
2k
).

log2 n∑
k=1

n

2k
= n

log2 n∑
k=1

1

2k

≤ n
∞∑
k=1

1

2k

= n

14

So T1 = n. Consequently, we can apply Brent’s theorem to get

O(
n

p
) ≤ Tp ≤ O(

n

p
) +O(log2(n))

Givens Rotations Givens Rotations are used to zero out the subdiagonal entries of
the matrix A one at a time. Crucially, a Givens rotation only affects two rows of the
matrix. We will use this fact to derive a parallel implementation of the Givens rotation
algorithm. Specifically, if two successive Givens rotations affect disjoint sets of rows,
then they can be computed in parallel.

(a) When n rows are available, what is the maximum number of Givens rotations we
can apply simultaneously?

Solution Each Given’s rotation affects two rows, so the maximum number we
can apply simultaneously are ⌊n

2
⌋.

Implementing the Givens rotations in parallel ultimately comes down to deriving a
schedule of the entries to eliminate at a particular step. We consider two functions
T (j, k) and S(j, k) where T (j, k) represents the iteration in which the jkth entry
is eliminated, and j and S(j, k) are the rows the Givens rotation operates on.
To simulateneously implement the Givens rotations, we require that T (j, k) and
S(j, k) satisfy:

• If T (j, k) = T (j′, k′) and (j, k) ̸= (j′, k′) then {j, S(j, k)} ∩ {j′, S(j′, k′)} = ∅.
• If T (j, k) = t and S(j, k) = i, then T (j, l) < t and T (i, l) < t for all l < k.

(b) Prove that the schedule given by

T (j, k) = n− j + 2k − 1

S(j, k) = j − 1

satisfies the above conditions.

Solution Suppose that T (j, k) = T (j′, k′). Then −j + 2k = −j′ + 2k′. If j = j′

then k = k′. If j ̸= j′, then j− j′ is even and in particular, |j− j′| ≥ 2. Therefore,
the sets {j, j − 1} and {j′, j′ − 1} are disjoint and the first property is satisfied.
For the second property,

T (S(j, k), l) = T (j − 1, l) = T (j, l) + 1 = n− j + 2l < n− j + 2k − 1 = T (j, k).

(c) What is the maximum number of stages required by this schedule?

Solution We find the maximum number of stages by maximizing T (j, k) over
all j and k. This is attained by j = n and k = n− 1, and so T (j, k) = 2n− 3.

15

